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Appearance-based Gaze Estimation with Online
Calibration from Mouse Operations
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Abstract—This paper presents an unconstrained gaze estima-
tion method using an online learning algorithm. We focus on
a desktop scenario where a user operates a personal computer,
and use the mouse-clicked positions to infer where on the screen
the user is looking at. Our method continuously captures the
user’s head pose and eye images with a monocular camera,
and each mouse click triggers learning sample acquisition. In
order to handle head pose variations, the samples are adaptively
clustered according to the estimated head pose. Then local
reconstruction-based gaze estimation models are incrementally
updated in each cluster. We conducted a prototype evaluation in
real-world environments, and our method achieved an estimation
accuracy of 2.9 degrees.

Index Terms—Eye movement, tracking, Computer Vision,
Human-computer interface

I. INTRODUCTION

Gaze estimation is the process of detecting at what the eyes
are looking. Many applications have been proposed in the
field of human-computer interaction, including attentive user
interfaces [1], [2] that use user attention for the goal of natural
interaction. Contrary to traditional gaze-pointing applications,
gaze and attention are intended to play a supplemental role to
assist user interaction [3].

Current techniques of gaze estimation suffer from technical
limitations such as a lengthy calibration process, extensive
hardware requirements, and difficulty in handing head pose
variations. Creating a calibration-free gaze estimator that uses
simple and low-cost equipment while allowing users to freely
move their heads is an open challenge.

One limitation of existing gaze estimation techniques is that
users actively participate in the calibration task. Users are
typically asked to look at several reference points to acquire
the ground-truth data. Since such an active task interrupts the
user interaction, even a short calibration step can be a critical
limitation in application scenarios that assume a natural state
of attention.

Our goal is to make a completely passive, non-contact,
single-camera system for estimating gaze direction that does
not require an explicit calibration stage yet still allows head
pose movement. To achieve this goal, we develop a new
appearance-based system of estimating gaze direction based
on an online-learning approach.
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Our system incorporates advances of the single-camera
three-dimensional (3-D) estimation of head poses to contin-
uously capture users’ head poses and eye images. We limit
our scenario to a desktop environment with a camera mounted
on the monitor. During the operation of a personal computer
(PC), the user looks at the mouse cursor when he or she clicks
the mouse button. Using the clicked coordinates as gaze labels,
the system automatically collects learning samples while users
are operating the PC. Our method continuously and adaptively
learns the mapping between eye appearance and gaze direction
without the need for lengthy calibrations.

Although the idea of using mouse clicks to explicitly recal-
ibrate an eye tracker has been presented in [4], in this work
we show that mouse clicks can serve as training data without
the user’s intention for eye tracker calibration. Using our
method, the user’s natural behavior can serve as a calibration
process and the gaze estimation process can be integrated into
desktop user interfaces. This leads to a scenario where users
can install a software-based gaze estimation system which
gradually learns to predict gaze positions on her/his own
PC. Although it does not directly enable the quick use of
the system, the mapping function is often device- and user-
dependent and the system can be used by the target user once
the function is learned.

In prior work we utilized visual saliency of a displayed
video to infer focus of attention [5], [6]. Chen et al. [7] applied
a similar idea to the case of model-based gaze estimation, and
Alnajar et al. [8] proposed to directly use actual human gaze
patterns collected from other viewers for the calibration-free
gaze estimation task. These approaches have complementary
scopes of application. Although the saliency-based technique
[5]–[7] can be applied to completely passive systems without
active user interaction, it is quite difficult to compute accurate
visual saliency maps in desktop environments. Further, reusing
gaze patterns that are obtained from other users as in [8] is
difficult in our interactive setting, where the gaze behavior is
heavily person-dependent. Here we demonstrate the practical
advantage of the proposed method that achieves comparable
accuracy while running in real time as a component of a
interactive system.

This paper extends our prior work [9] by considering: 1) On-
line refinement of gaze labels, 2) an improved approach for
discarding inappropriate training samples, and 3) subpixel eye-
image alignment and blink detection. We also present results
using a web browsing scenario.

The rest of the paper is organized as follows. Section II
presents related work, and Section III describes the archi-
tecture of our system. Section IV explains our gaze esti-
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mation method based on an incremental-learning algorithm.
The details of implementing the head tracking and eye-image
cropping are in Section V. Proof of concept evaluations appear
in Section VI. Section VII concludes the paper.

II. RELATED WORK

A. Model-based methods

Model-based approaches use an explicit geometric model of
an eye and estimate the eye’s gaze direction using geometric
eye features [10], [11]. While model-based approaches tend to
produce more accurate results than appearance-based methods,
they typically require a high-resolution camera for accurately
locating the geometric features in the eyes.

In addition, model-based methods often require additional
hardware such as multiple cameras or calibrated light sources
to handle head movements [12]–[20]. Such requirements result
in large systems with special equipment that are not readily
available to end-users. Also, the algorithms are specialized to
their own hardware configuration; therefore, it is difficult to
implement a similar approach with only a single web camera.

There have been methods proposed to remove such restric-
tions in model-based approaches. Ishikawa et al.’s method [21]
uses an active appearance model [22] to extract eye features
and head poses only with a monocular camera. Yamazoe et
al. ’s method [23] estimates gaze direction by fitting a 3-D
eye model to 2-D eye images. These approaches work in the
real-world, and ordinary low-resolution cameras are used in
both methods. Unfortunately, their methods are limited to only
computing coarse features, such as the edge of the iris and the
corners of the eyes, due to the low resolution of the camera,
and result in lower accuracy in comparison with other model-
based methods.

B. Appearance-based methods

Appearance-based approaches directly compute features
from the appearance of eye images and estimate the gaze
points by learning the mapping between eye image features
and gaze points [24]–[28]. Compared to model-based methods,
appearance-based methods have an advantage of simpler and
less restrictive systems and have robustness against outliers
even when implemented with relatively low-resolution cam-
eras. The downsides are 1) typically more data are needed
in comparison with the model-based methods, and 2) the
estimation accuracy is in general not as high as with model-
based methods.

With appearance-based approaches, it is difficult to deal
with changes in head pose and head pose variation introduces
the requirement for additional training samples. Baluja et
al.’s method [24] allows for some head movements among
the appearance-based methods. Their method collects training
samples for each different head pose while the range of head
pose change is limited. They describe two major difficulties: 1)
the appearance of an eye looking at the same point drastically
varies with the head pose. Therefore, additional information
about the head pose is necessary and 2) the training samples
have to be collected across the pose space to account for head

movements. This results in a large number of training samples
and an unrealistically lengthy calibration stage.

To address head pose changes. Lu et al.’s method [29]
utilizes additional training data, i.e., a video of the target
person rotating her/his head while fixating on a calibration
target, to learn an error compensation function caused by head
movements. They also proposed an approach to synthesize eye
images for unknown head poses using additional reference
images to estimate pixel flows [30]. Although it relies on
an additional RGB-D input, Funes et al.’s method [31] uses
front-facing eye images that are warped using estimated 3D
facial shapes. Valenti et al. [32] proposed a pose-retargeted
gaze estimation method that adaptively maps the calibration
plane and gaze displacement vectors to target planes according
to 3D head poses. However, they require specially-designed
calibration processes at reference head poses, and cannot be
applied to our problem setting which results in an uncontrolled
stream of training samples.

III. ARCHITECHTURE

The process flow of our approach is illustrated in Figure 1.
The input to the system is a continuous video stream from
the camera as well as the display coordinates of the clicked
points. The 3-D model-based head tracker [33] keeps running
during the entire process to capture the head pose p and to
crop the eye image x.

Our approach assumes that the user’s gaze is directed at the
mouse cursor on the monitor when the user clicks a mouse
button. With this assumption, we collect learning samples by
capturing mouse cursor positions when clicking as well as eye
images and head poses. We create a training sample at each
mouse click using the screen coordinates of the mouse position
as the gaze label, g, associated with the appearance features
(head pose p and eye image x). More training samples are
obtained the more the user clicks. Our system incrementally
updates the mapping function between appearance features and
gaze positions using the labeled samples.

In the learning stage, incremental learning is performed
in a reduced principal components analysis (PCA) [34], [35]
subspace to decrease the computational cost of dealing with
multi-dimensional image features. The samples are adaptively
clustered according to their head poses, and the local appear-
ance manifold is updated in each sample cluster.

When the new training samples are not given to the system,
the system runs in a prediction loop. In the prediction loop, the
inputs to the system are only the head pose p and eye image x,
and the system produces gaze estimates ĝ. The gaze estimate
ĝ is produced by local linear interpolation of the accumulated
training samples. As more samples are accumulated in the
learning loop, the sample clusters and local manifolds are
updated; therefore, it produces more reliable gaze estimates.

IV. ALGORITHM

The heart of our gaze estimator is to learn the mapping
between appearance features {x,p} and the gaze label g. Once
the mapping is established, our method predicts the unknown
label ĝ from the unlabeled features {x,p}. Our method uses a



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 3

User activity (mouse click)

3D head tracker

Input

Gaze point

Output

Gaze estimator

PCA subspace

Eye image
Head pose

Gaze point

Prediction

Learning

Fig. 1. Learning and prediction flow for the proposed framework. Our method continuously takes gaze points g, eye images x, and head poses p from the
mouse clicks and synchronously captured images of the user for learning. For the prediction stage, the method takes only eye images x and head poses p as
input to produce gaze estimates ĝ.

local linear interpolation method that is similar to [26], [36],
i.e., we predict the unknown label ĝ by choosing k nearest
neighbors from the labeled samples and interpolating their
labels using distance-based weights.

For the accurate interpolation, it is critical to choose the
correct neighbors from the appearance manifold, which models
appearance changes of different gaze directions. Tan et al. [26]
use 2-D topological information about the coordinates of the
gaze labels as a constraint. Two eye images are assumed to
be neighbors on the manifold in their method when they have
similar gaze directions instead of simply evaluating by the sim-
ilarity of their appearances. This assumption, however, does
not always hold if head pose changes are considered. With
the head pose variations, two different gaze directions yield
similar appearances, or conversely, similar gaze directions lead
to very different appearances.

To overcome this problem, we compute the sample clusters
with similar head poses and create a local manifold for
each sample cluster. This model is inspired by the locally
weighted projection regression (LWPR) algorithm [37]. The
local linear regressors are adaptively created and learned in
LWPR according to the distance of input features. We employ
similar adaptive architecture to create pose-dependent clusters
of eye images.

In our method, the similarity measure of the cluster, i.e.,
the distance between the head pose and the sample cluster, is
defined as a product of the Gaussian functions of head trans-
lation and rotation. Given a pose p, specified by translation t
and rotation r in 3-D, the distance sk between the head pose
p to a certain cluster (say, the k-th cluster) is computed as

sk(p) =
1√

2πκtσ2
t

exp

(
−||t− t̄||

2

2κtσ2
t

)
1√

2πκrσ2
r

exp

(
−||r − r̄||

2

2κrσ2
r

)
, (1)

where t̄ and σ2
t are the average and variance of head translation

calculated from the samples in the cluster. Likewise, r̄ and σ2
r

are the average and variance of head rotation. The constant
weights κt and κr are empirically set.

In Equation (1), the Euclidean distance measure is used for
both translation and rotation vectors. In our method, the rota-
tion vector is represented by quaternions. With the quaternion
representation, the distance can be measured by an angular
distance ωd, i.e., the angle of rotation from one quaternion
to the other. However, we approximate it using the Euclidean
distance. Because we incrementally and continuously update
the clusters, calculating the average r̄ is computationally ex-
pensive in the angular-distance measure. However, the average
orientation in the Euclidean-distance measure can easily be
obtained as an arithmetic average of the quaternions [38]. The
Euclidean distance ||r− r̄||2 = ||I − r̄r−1||2 = 4 sin2(ωd/4)
can also be a good approximation of the angular distance when
the two rotations are close.

Given a labeled sample {x,p, g}, the eye image x is first
used to update the PCA subspace of the eye images. The
subspace that we use is described with N eigenvectors as

x ≈ x̄+Ua, (2)

where x̄ is the mean eye image, U is the matrix whose
columns are composed of the first N eigenvectors, and a is an
N -dimensional vector of PCA coefficients. After updating the
subspace, the sample is added to all clusters whose similarity
sk(pt)) is greater than the predefined threshold τx. If no
suitable clusters are found, a new cluster is created to only
contain the new sample. In the prediction stage, given an
unlabeled feature {x,p}, the output gaze ĝ is computed
as a weighted average of the candidate predictions obtained
from multiple sample clusters. The following sections IV-A
and IV-B describe further details of prediction and learning
methods. The prediction and learning algorithms are outlined
in Algorithm 1.

A. Prediction

When unlabeled data {x,p} are given, the system predicts
the gaze estimate ĝ from the learnt data. First, the eye image
x is projected onto the current PCA subspace computed from
all the training samples as

a = tU(x− x̄), (3)



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 4

Algorithm 1 Adaptive clustering framework

Prediction: Given input features {x,p}
Project image x into the current subspace: a = tU(x− x̄)
for k = 1 to K (the number of clusters) do

Calculate the interpolated gaze ĝk and prediction confi-
dence ck (Section IV-A).

end for
Compute final prediction as a weighted average: ĝ =∑
k ckĝk/

∑
k ck.

Learning: Given the i-th learning sample {x,p} associated
with the gaze label g

Update the image subspace using incremental PCA: mean
x̄, eigenvectors U , eigenvalues λ, coefficients {a1 . . .ai}.
The input x is approximated as x ≈ x̄+Uai.
for k = 1 to K (with respect to each of all K clusters) do

if sk(pi) > τx then
Add sample to the cluster and update its local manifold
(Section IV-B).

end if
end for
if none of sk(pi) is greater the threshold τx then

Create new (K + 1)-th cluster and add the sample.
K ← K + 1.

end if

Fig. 2. Example of gaze triangulation shown in screen coordinates. Each
eye image (flipped horizontally for a better visualization) is located at the
corresponding gaze point, and the lines indicate Delaunay edges between the
gaze points.

using the mean eye image x̄, the basis matrix U whose
columns comprises the first N eigenvectors. a is the projected
N -dimensional vector. An intermediate gaze estimate ĝk is
then computed in each cluster using the projected eye image
(PCA coefficients) a and the local interpolation of its neigh-
bors. The neighboring samples of the projected eye image a
are selected from the manifold, and the gaze labels of the
neighbors are interpolated to determine the intermediate gaze
estimate ĝk from the k-th cluster.

As in Tan et al. [26], we use the Delaunay triangulation
of the gaze label for creating the appearance manifold. Fig-
ure 2 shows the visualization of the appearance manifold
with Delaunay triangulation. Given the projected eye image
a, our method finds neighboring triangles in the appearance
subspace. The distance from the projected eye image a to a
triangle is measured by the average distance from the projected

eye image a to the samples (vertices) of the triangle. The
samples on the triangle as well as the samples adjacent to
the triangle are regarded as neighboring samples. By selecting
such neighboring samples that are located near the triangle,
the sample set for interpolation is restricted to have a limited
amount of gaze variations. To ensure computational efficiency,
the above process of finding neighboring triangles is performed
using the Ns closest samples in the cluster. If none of the Ns
samples forms a triangle, Ns is increased by ns until a triangle
set is found.

Using the selected sample set Np, we compute the inter-
polation weights w = (w1, w2, . . . , w|Np|). The interpolation
weights w are computed by minimizing the reconstruction
error as

w = argmin
w

(
a−

∑
i∈Np

wiai

)2

s.t .
∑
i∈Np

wi = 1, (4)

where wi denotes the weight of the i-th neighbor’s appearance
ai. Finally, assuming the local linearity, the intermediate gaze
estimate gk from the k-th cluster is computed as

ĝk =
∑
i∈Np

wigi. (5)

To reduce negative effects from the clusters that do not
contain a sufficient number of samples, we define a reliability
measure for the interpolation that represents how well the input
appearance a can be described by the selected neighbors as

rk(a) = exp

(
−

(a−
∑
i∈Np

wiai)
2

2ς2r

)
. (6)

In other words, we discard samples from the clusters where the
reconstruction error of the input appearance a is significant.
In Equation (6), the factor ςr is empirically set. We define the
prediction confidence ck as a product of the reliability r(a)
and the pose similarity s(p) as

ck = sk(p)rk(a). (7)

In this manner, the prediction confidence embeds the reliability
of the k-th cluster as well as the similarity with the neighboring
samples. The final gaze prediction ĝ is computed as a weighted
average of the intermediate predictions ĝk using the prediction
confidence ck as

ĝ =

∑
k ckĝk∑
k ck

. (8)

To assess the overall reliability of the gaze estimate ĝ,
we further compute the weighted average of rk(a) using the
similarity measure sk as weights:

r̄(p,a) =

∑
k sk(p)rk(a)∑

k sk(p)
. (9)

Figure 3 shows the angular error plot of the gaze estimate ĝ
across the prediction reliability r̄. The plot shows that the
accuracy of estimation increases as the reliability measure
increases. From this observation, we stabilize the gaze estimate
ĝ by taking a weighted temporal average obtained from
consecutive frames based on the reliability r̄. The effect of
the temporal averaging is discussed in Section VI.
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Fig. 3. Angular error of the gaze estimate ĝ against prediction reliability r̄
(Eq. (9)). The bold rectangles represent local averages with a window width
of 0.1 along the reliability axis.
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Fig. 4. The gaze label of the sample g is refined using the weighted average
of interpolated labels gi on the neighboring triangles (within the distance
threshold τg).

B. Learning

When the user clicks a mouse button, our system takes the
clicked position (as the labeled gaze g) as well as the user’s
head pose p and eye image x as a training sample. Given
the i-th training sample {xi,pi, gi}, our method updates the
appearance subspace using Skocaj et al. [35]’s incremental
PCA method. The mean eye image x̄ and the basis matrix
U in Equation (2) as well as all the previous coefficients
{a1 . . .ai−1} are updated at the same time.

After updating the appearance subspace, the reduced learn-
ing sample {ai,pi, gi} is added to a pose cluster only when its
head pose pi is sufficiently close to the cluster’s center. With
this approach, all clusters are guaranteed to contain samples
with similar head poses. Tan et al. [26] use a topological
manifold model with a similar setting to ours. In their method,
however, the gaze label g is treated as a static quantity without
any error. In reality, humans cannot gaze at a point with a
pixel-level accuracy. Even when a user is looking at a target
carefully, a certain level of fixational eye movement occurs.
About 1-degree of microsaccades occur during fixation [39].
In our case, since the user is not forced to look carefully at the
mouse cursor when clicking, larger errors can be included in
the gaze label g. Moreover, there could be meaningless sam-
ples due to random mouse clicks without sufficient attention.

For these reasons, we avoid directly using the clicked
coordinates gc as a gaze label g. Instead, we estimate the
probable gaze label g constrained by gc using a refining

approach starting with gc as an initial value for g. To refine the
gaze label g of the sample, we first select all existing samples
whose distance to the incoming sample’s click point gc are
under a threshold τg in the gaze space. Using these existing
samples and incoming-sample g, the set of all combinations of
three samples that are nearby and enclose incoming-sample g
can be computed (see Figure 4). Using the method described
in the previous section, interpolated gaze label gi can be
computed from each triangle. All the interpolated labels are
aggregated as a Gaussian-weighted average around gc as

g =
gc +

∑
i riqigi

1 +
∑
i riqi

, (10)

where the Gaussian weighting factor qi is defined as

qi = exp

(
−||gi − gc||2

2ς2q

)
. (11)

In the above equations, i is the triangle index, and ri is the
reliability measure calculated as in Equation (6). The factor
ςq is empirically set. The clicked point gc is added with the
full-weight 1.

As mentioned above, there are incoming samples that are
inadequate as learning samples, e.g., clicks without due atten-
tion. These samples do not convey the correlation between the
appearance and gaze label (clicked point). To avoid such out-
liers, we assess the data through cross validation. In addition
to computing the interpolated gaze label g, we can compute
a standard interpolation ġ without the constraint of gc as

ġ =

∑
i rigi∑
i ri

. (12)

If the distance dg = ||ġ−gc||2 is too large, i.e., the interpolated
gaze ġ is too far from the clicked point gc, the sample can be
considered as an outlier. In that case, we eliminate the sample
from the cluster instead of refining its gaze label.

To avoid biased distribution of the training samples in the
gaze space, we further prune the learning samples to improve
the quality of the training data when the density of the training
samples becomes high. If there is more than one sample within
radius τr around the position of incoming gaze label g, we
keep the nearest sample (with the lowest dg) and eliminate
the other samples. The threshold value τr should be set with
respect to both the size of the display area and memory
capacity. For example, Tan et al. [26] used one sample per
2.76 cm2. Whenever a new incoming sample is provided, the
data resampling process described above is executed for every
sample in the clusters.

Once a sample is added to the cluster, we incrementally
update the cluster mean t̄k and variance σ2

t,k of Equation (1)
as

t̄ ← nt̄+ t

n+ 1
, (13)

σ2
t ← nσ2

t + (t− t̄new)(t− t̄old)

n+ 1
,

where n denotes the number of samples in the cluster before
updating, t represents the translation vector of the incoming
sample, and t̄old and t̄new are the cluster means before and after
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Fig. 5. Head pose tracking and eye image capturing. (a) Estimation of the
head pose. The lines represent the normal directions of the bounding box of
the user’s head. (b) Cropped eye image. The eye image is cropped based on
the predefined eye region on the face mesh (rectangle in (a)). (c) Cropped
eye image after post-processing. The eye location is aligned and intensity is
enhanced. This image is used as the eye appearance feature.

the update, respectively. The updating procedure is applied
to the rotation component r̄ and its variance σ2

r . After,
the Delaunay triangulation in the gaze-label coordinates is
recomputed.

V. IMPLEMENTATION

In this section we describe the methods of obtaining input
features, i.e., the head pose p and eye image x from a sequence
of gray-scale input images. We also explain the method of
detecting blinks for improving the accuracy of gaze estimates.

A. Head pose tracking

Our method uses the head-tracking method [33] based on
a multi-linear model, which represents face shape variations
by two separate factors: variations across people and facial
expressions. The head data are represented as the appearance
of the face and 3-D positions of 10 feature points defined in
the local-coordinate system of the user’s head (Figure 5 (a)).
In this work, we ignore the shape variations caused by
facial expressions and use a simplified linear model to adapt
to the variations across people. Our method precomputes 8
eigenshapes from the database of facial shapes, and the face
shape is represented by the linear combination of the basis
shapes. Using the model, our system simultaneously tracks
the 3-D head pose using a particle filter [40] and estimates
the face shape based on bundle adjustment [41]. As a result,
the tracker outputs the user’s 3-D head pose p = {t, r}, where
t = t(x, y, z) is a 3-D translation and r = t(q1, q2, q3, q4) is a
4-D rotation vector defined by four quaternions. Figure 5 (a)
shows an example of head pose tracking. The crosses indicate
the positions of the detected feature points, and the lines
represent the head pose.

B. Eye image cropping

Once the head pose p is estimated, the system crops the eye
image x. Using the estimated head position p, it first extracts a
rough eye region from the input image using the predefined eye
location in the generic 3-D face model. Based on the distance
between the two eye corners in the image coordinates, the

rectangular region with a fixed aspect ratio (the rectangle in
Figure 5 (a)) is cropped. The rectangle is then re-scaled to a
normalized W1×H1 image I1 (Figure 5 (b)). We further apply
histogram equalization to normalize its brightness to obtain the
final eye image I2.

While head pose tracking is robust, there still remains a
small error when cropping eye images. This error appears as
a small amount of jittering in the eye image sequence. For an
appearance-based method, accurate alignment of eye images
is crucial. To improve the alignment, we apply a subspace
alignment method as described below.

The eye image I2 of size W2×H2 (Figure 5 (c)) is cropped
from the larger image I1 of size W1×H1 with a top left margin
d = t(x, y). As described in Section IV, the PCA subspace
used in the learning algorithm is updated incrementally using
the labeled samples. Our method tries to find the eye image I2
that maximizes the correlation with the reconstruction image
Í2. created from the appearance subspace. The vector form of
the reconstruction image x́2 is computed as

x́2 = x̄+U tU(x2 − x̄), (14)

where x2 is a vector form of the eye image I2, x̄ is the average
eye image, and U is a matrix that consists of eigenvectors of
the PCA subspace.

To find the optimal cropping region, a correlation map C
is computed in a brute force manner in the area of (W1 −
W2 + 1)× (H1 −H2 + 1). The value in the correlation map
C(x, y) corresponds to the correlation between I2 and Í2 with
an offset d = t(x, y). The offset in the pixel level accuracy is
determined by taking the point (x, y) that gives the maximal
value of C(x, y). Using this solution as the initial guess, we
further compute the sub-pixel alignment using a simple 2-D
parabola fitting described as[

∂C(x+δx,y+δy)
∂x

∂C(x+δx,y+δy)
∂y

]
= 0, (15)

where δx and δy are the subpixel displacement along the x-
and y-axes, respectively. Equation (15) can be approximated
by a Taylor expansion around (x, y) as[

C ′x
C ′y

]
+

[
C ′′xx C ′′xy
C ′′xy C ′′yy

] [
δx
δy

]
= 0, (16)

and the subpixel displacement (δx, δy) is obtained by δx =
C′

yC
′′
xy−C

′
xC

′′
yy

C′′
xxC

′′
yy−(C′′

xy)
2

δy =
C′

xC
′′
xy−C

′
yC

′′
xx

C′′
xxC

′′
yy−(C′′

xy)
2

. (17)

Here, C ′ and C ′′ are the 1st and 2nd order derivatives of C
at (x, y).

Finally, I2 is cropped with the offset (x+δx, y+δy) to create
the vectorized form of the eye image x. In our configuration,
the size of the final image is set to (W2, H2) = (70, 30). In
most cases eye images were around 80 ∼ 100 pixels wide,
and larger than the final resolution.
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Fig. 6. Blink detection. The graph shows the correlation between the cropped
eye image I2 and reconstruction image Í2. The eye images correspond to I2.
The correlation drops significantly when the user blinks.

C. Blink detection

If a user blinks when clicking, the data are inappropriate for
training. To eliminate such samples, our method automatically
detects blinks based on the correlation of the incoming eye
image and the accumulated eye images. As described in
the previous section, cropping of eye images is performed
by finding the optimal offset where the correlation with the
reconstructed image is maximized. However, if the input eye
image is dissimilar to any samples that span the subspace
(e.g., the blinking case), the maximum correlation becomes
relatively small. From this observation, our method finds the
blinking eye images by evaluating the correlation as illustrated
in Figure 6. If the correlation is lower than a pre-defined
threshold τb, we treat the sample as an inappropriate sample.

A blink of an eye usually lasts for about 150 ms, which is
long enough to appear in multiple video frames as illustrated
in Figure 6. Therefore, we discard the neighboring frames of
the detected blinks within a certain time range.

VI. PROOF OF CONCEPT EVALUATIONS

A. Apparatus

Our system consists of a VGA resolution camera (PointGrey
Flea) and a Windows PC with a 2.67 GHz dual core CPU and 3
GB of RAM. The processing times are about 2 ms for the head
tracking, 20 ms for eye cropping and alignment, 20 ms for
gaze estimation, and 25 ms for learning. The entire estimation
process including display rendering runs at about 20 fps in
our research implementation. Throughout the experiments, we
used the following parameters: κt = κr = 2.0, τx = 0.001,
Ns = 30, ns = 10, ς2r = 25000, ς2q = 2500, τg = 100 px,
τr = 30 px, and τb = 0.99. We used a 17-inch display with a
resolution of 1280× 1024 pixels (96 dpi).

B. Evaluation with random targets

1) Participants: Ten (nine male and one female) users who
did not wear glasses participated. Their ages ranged from 27
to 32, and the average age of the participants was 28.9 with
a standard deviation of 1.8.

2) Procedure: We first conduct the experiment using ran-
dom click targets. A target for clicking is randomly shown to
the user in a full-screen window. To simulate a typical target,
like a button or an icon on the desktop, we use a circle with

Fig. 7. System setting for the experiments. Left figure shows the screen-
shot of the full-screen window shown to the user. Right figure shows the
experiment setup.

a 64-pixel diameter (Figure 7). The users were asked to click
the displayed targets as usual. During the operation, the users
are allowed to freely move their head poses. Experiments were
conducted for about 20 minutes (until about 1200 clicks) to
evaluate the performance variation across the running time and
diverse head pose variations.

3) Dependent measures: Whenever a new labeled sample
is given, the prediction is performed prior to the learning.
The estimation error is evaluated as the distance between the
clicked position gt and the estimated gaze position ĝt. The
angular error θ is computed as

θt = tan−1
(
Dm(gt, ĝt)

zt − dcam

)
, (18)

where Dm indicates the distance between two points in the
metric unit, zt is the depth of the estimated head pose at time
t in the camera coordinate system, and dcam is the pre-defined
distance between the camera and the display. The dcam is 10
cm in our configuration.

4) Results: Table I shows the angular and pixel errors
(denoted as average ± standard deviation), click count, the
numbers of clusters. “Normal” error corresponds to the error
of the raw output ĝ, and “weighted” error indicates the error
of the results with the weighted temporal averaging (taking
the past 5 frames in this experiment) based on the weight r̄
in Equation (9). “Used” clicks denote the number of clicks
that are not discarded by the rejection process described
in Section V-C. The last six columns show the ranges of
head movement of each user. Translation ranges x, y, and
z correspond to horizontal, vertical, and depth directions, and
rotation ranges φ, θ, ψ correspond to angles around the z-, x-,
and y-axes, respectively. The average range in the experiment
was 23× 7× 35 cm and 15× 32× 24 degrees.

The angular error is consistently low across different users
(around 3 degrees), and it demonstrates the better performance
when the weighted temporal averaging is used. Figure 8 shows
the evolution of the average of weighted angular error against
the number of clicks. There are some variations across users,
in the early stage of the learning, e.g., less than 400 clicks,
and the errors generally tend to be higher due to an insufficient
number of learning samples. However, the errors consistently
converge to a certain range after 600 clicks and do not diverge
throughout the sessions.

Table II compares our method to a commercial gaze tracker
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TABLE I
RESULT USING RANDOM TARGETS. “NORMAL” ERROR CORRESPONDS TO THE RAW OUTPUT ĝ, OF THE SYSTEM, AND “WEIGHTED” ERROR

CORRESPONDS TO THE TEMPORAL WEIGHTED AVERAGE BASED ON THE WEIGHT r̄ IN EQ. (9). φ, θ, AND ψ CORRESPOND TO THE ROTATION ANGLES
AROUND THE z-, x-, AND y-AXES, RESPECTIVELY.

Angular error deg Pixel error px Num. clicks Num. Trans. cm Rot. deg
Person Weighted Normal Weighted Normal Used/All clusters x y z φ θ ψ

A 2.5 ± 1.5 2.9 ± 1.8 89 ± 58 105 ± 67 1313/1313 13 16 7 31 5 18 17
B 3.0 ± 2.2 3.7 ± 2.8 135 ± 101 165 ± 130 1293/1302 11 27 10 36 9 32 19
C 2.4 ± 1.5 3.0 ± 1.9 102 ± 65 126 ± 82 1305/1308 7 23 3 37 6 32 12
D 3.1 ± 1.5 3.7 ± 2.7 107 ± 73 129 ± 92 1301/1302 7 22 8 31 7 29 21
E 3.0 ± 2.3 3.3 ± 2.4 126 ± 92 140 ± 101 1226/1248 21 27 6 52 16 33 29
F 3.2 ± 2.0 3.6 ± 2.3 150 ± 95 170 ± 112 1318/1319 17 34 7 37 18 36 25
G 2.8 ± 2.0 3.5 ± 3.0 120 ± 85 148 ± 130 1308/1312 11 19 6 34 17 23 28
H 3.1 ± 2.2 3.6 ± 2.6 150 ± 105 174 ± 125 1305/1308 7 23 8 31 8 29 16
I 2.8 ± 2.2 3.1 ± 2.4 110 ± 89 122 ± 99 1278/1309 13 21 10 34 41 43 29
J 3.3 ± 2.6 3.7 ± 2.9 145 ± 117 164 ± 132 1267/1315 17 17 8 23 22 42 43

Average 2.9 ± 2.1 3.4 ± 2.5 123 ± 88 144 ± 107 23 7 35 15 32 24
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Fig. 8. Evolution of the average angular error. The graph shows the average
of the weighted angular error in the random-target experiments against the
number of clicks. Each line corresponds to each user in Table I.

TABLE II
COMPARISONS WITH A COMMERCIAL GAZE TRACKER AND

CAMERA-BASED GAZE ESTIMATION METHODS THAT ALLOWS FREE HEAD
MOVEMENTS [29], [30], [32].

Angular Movement Missing
Method error deg range cm estimation rate

Proposed 2.9 ± 2.1 23 × 7 × 35 -
TX300 1.7 ± 2.4 29 × 12 × 31 35%

Lu et al. [29] 2.38 [29] - -
Lu et al. [30] 2.24 [30] - -

Valenti et al. [32] 3 ∼ 5 [32] - -

(Tobii TX3001) and camera-based gaze estimation methods
that allows free head movements [29], [30], [32]. Average esti-
mation error of TX300 is evaluated with the same experimental
setting, i.e., users were instructed to click random targets
under free head movement. The second column in Table II
shows an average angular error of 10 users, where each of the
users clicked about 300 times. The other columns show head
movement range during the experiments and the percentage of
frames with missing estimation results. While the estimation

1http://www.tobii.com/
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Fig. 9. Comparison of errors with and without the clustering. The plot
shows the average errors of User A using random targets. The red and
blue lines correspond to the results with clustering (normal and weighted
output, respectively), and the green line corresponds to normal output without
clustering.

accuracy of TX300 is better than our camera-based approach,
when the users are freely moving their heads, the error tends to
become higher than 1 degree and the system frequently returns
missing estimation results. The overall missing estimation rate
of TX300 was about 35%. For the other three methods, their
reported estimation errors are shown. These methods depend
on explicit calibration stages, and [32] is the only method
which is reported to work in real-time. Despite a lack of
reliable calibration data obtained through an active calibration
scheme, our method can achieve similar accuracy to these
methods.

To assess the effectiveness of our clustering approach, we
compared the performance with and without the clustering
method. Figure 9 shows one of the results. The plots represent
the evolution of the average angular errors of the gaze esti-
mates for User A. The middle and the bottom lines correspond
to the clustering results (normal and weighted output), and
the top line corresponds to the output without clustering, i.e.,
all samples are added to a single cluster. From the plot, the
clustering approach consistently improves the performance.
The error gradually increased and did not converge to a certain
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Fig. 10. Estimation error with respect to input noise. Two lines correspond to
average angular errors plotted against standard deviation of the noise added
to head translation and eye cropping position.

error without the clustering. In addition, by comparing the
middle and bottom lines, we can see that the estimation error
is greatly reduced by taking the weighted temporal average.
The percentage of the reduced error is about 85% on average
for all users when the weighted temporal averaging is used.

We further conducted a performance comparison with ar-
tificial error to quantitatively evaluate the robustness against
input noise. In Figure 10, Gaussian noise was added to two
factors of the input information and average angular errors of
10 users were plotted against the standard deviation of the
noise. For head pose, the noise was added to estimated head
translations with the standard deviation ranging from 0 to 5
cm. The estimation error does not diverge greatly and our
method can robustly handle noisy head pose. This is mainly
because the head pose is indirectly used as a cue to evaluate
cluster similarity in our method and it does not heavily rely on
geometric information. For eye cropping, alignment error was
added to the re-scaled eye image I1 with the standard deviation
ranging from 0 to 5 pixels. Although the error is greater when
there is larger cropping noise than, e.g., 3 pixels, our method
can compensate small cropping noise through the sub-pixel
alignment step.

C. Evaluation with desktop environment

Five users from the prior evaluation browsed web pages for
about 30 minutes. The average click count for a user is around
600. To create a natural desktop environment for testing, we
implemented a global system hook that ran as a background
process to capture the click events and positions. The system
continuously captures the user’s head poses and eye images
as a background process.

Table III shows the angular and pixel errors, click count, the
numbers of clusters, and the range of head pose movement.
As in the previous experiment, clicked coordinates are used
as the ground-truth gaze positions. Our method achieves an
angular error of 2.6 degrees on average. Although the click
counts and head pose variations are limited, the accuracy of
gaze estimation is comparable with the result using random
targets. Figure 11 shows the average of the weighted angular
error with respect to the click count. We observed that the
error converged in a similar manner with the previous result.
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Fig. 11. Evolution of the average angular error in the real-world setting.
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Fig. 12. Distribution of clicked points by User A in the desktop-environment
scenario. Clicked points are distributed in the 1280 × 1024 desktop space.

One of the most important factors in this experiment setting
was the biased distribution of the click positions. Figure 12
shows the distribution of the clicked positions by User A.
We can see more clicks on menu buttons and at the top of
the desktop. The distribution of click points in the real-world
scenario is expected to be biased, like this example. For the
areas with sparse gaze labels, it is hard to achieve a good
estimation. However, it is expected that the possibility of the
user to steadily look at such areas is low. Another interesting
observation is that the distribution of the gaze labels varies
with the tasks and application scenarios. Our method can get
updated with the changes in the distribution because of the
incremental learning approach.

VII. DISCUSSION

We proposed an appearance-based gaze estimation method
using an incremental learning approach. The proposed method
is developed for a desktop scenario, where a user clicks a
mouse in PC operations. The clicked position is used as a
gaze label, and the head pose and appearance of the eye are
recorded with a standard desktop camera. To allow free head
movement, we used a 3-D head pose tracker and proposed a
clustering-based method for learning pose-dependent mapping
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TABLE III
RESULT USING DESKTOP ENVIRONMENT. FROM LEFT TO RIGHT, ANGULAR AND PIXEL ERRORS, CLICK COUNT, THE NUMBER OF CLUSTERS, AND RANGE

OF HEAD POSE MOVEMENT ARE SHOWN.

Angular error deg Pixel error px Num. clicks Num. Trans. cm Rot. deg
Person Weighted Normal Weighted Normal Used/All clusters x y z φ θ ψ

A 3.0 ± 2.8 3.4 ± 3.2 111 ± 108 127 ± 124 717/728 4 14 6 28 9 23 17
B 2.7 ± 2.1 3.0 ± 2.4 119 ± 95 136 ± 110 706/718 6 8 5 31 26 47 20
C 2.3 ± 1.7 2.8 ± 2.0 121 ± 90 148 ± 104 700/700 3 18 2 28 4 22 10
D 2.7 ± 1.7 3.3 ± 2.1 112 ± 73 134 ± 90 618/619 1 3 4 13 7 9 11
E 2.3 ± 1.9 2.7 ± 2.2 92 ± 78 105 ± 88 679/692 3 4 4 10 8 21 16

Average 2.6 ± 2.1 3.0 ± 2.4 111 ± 89 130 ± 103 10 4 22 11 25 14

functions between eye appearances and gaze points. We further
introduced methods of subspace eye alignment and gaze label
refinement to enhance the estimation accuracy.

While a limitation of our approach is the time is takes for
the gaze estimation process, the effectiveness of the proposed
method is validated through proof of concept evaluations, and
our method achieved an estimation accuracy of 2.9 degrees
without temporal smoothing. Although less accurate than state-
of-the-art commercial products, our method works with a
single camera without any special hardware and does not
require active participation in the calibration task. This enables
a scenario where users can use a gaze estimation system that
adaptively learns to predict their gaze positions through the
users’ daily activities on a standard PC. The performance of
the proposed method is accurate enough to infer the user’s area
of interest and their corresponding desktop UI components.
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