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Abstract. This paper describes an efficient method for general norm approxima-
tion that appears frequently in various computer vision problems. Such a lot of
problems are differently formulated, but frequently require to minimize the sum
of weighted norms as the general norm approximation. Therefore we extend Iter-
atively Reweighted Least Squares (IRLS) that is originally for minimizing single
norm. The proposed method accelerates solving the least-square problem in IRLS
by warm start that finds the next solution by the previous solution over iterations.
Through numerical tests and application to the computer vision problems, we
demonstrate that the proposed method solves the general norm approximation
efficiently with small errors.

1 Introduction

In various tasks in digitally archiving cultural heritages including 3D reconstruction [1,
2], numerical optimization plays a central role. More specifically, we often optimize
some ℓp-norm of the cost vector (equivalently, its p-th power ℓpp) or the combination of
different vector norms. For example, in compressive sensing, an unconstrained form of
Lasso (least absolute shrinkage and selection operator) [3]

min
x
∥Ax− b∥22 + λ∥x∥1 (1)

is used for reconstructing sparse signal x while ensuring data fitting. As another exam-
ple, Tikhonov regularization (or ridge regression) [4],

min
x
∥Ax− b∥22 + λ∥Γx∥22, (2)

appears in image restoration, super-resolution, and image deblurring. These objective
functions can be further augmented by additional ℓp-norm terms that represent further
constraints for particular problems. For example, the elastic net [5] is defined as

min
x
∥Ax− b∥22 + λ1∥x∥1 + λ2∥x∥22 (3)

by regularizing the solution using both ℓ1- and ℓ2-norm terms. Some special cases are
known to have closed-form solutions, e.g., the minimizer of Tikhonov regularization (2)
is given by x̂ = (A⊤A+ λΓ⊤Γ )−1A⊤b, or can be transformed into a simpler expres-
sion, e.g., the elastic net problem (3) can be rewritten as an equivalent Lasso problem (1)
with some augmentation [5].
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Generally, these ℓp(p ≥ 1) unconstrained minimization problems can be solved by
any convex optimization methods1. To gain a greater computation performance, typi-
cally problem-specific structures are exploited to design a tailored solution method. For
example, least-squares problems that consist of ℓ2-norms can be solved analytically,
or for a large-scale problem, conjugate gradient methods [6] are employed for faster
computation. When the rank of the design matrix is small enough, randomized singular
value decomposition (R-SVD) [7] may be employed for further acceleration. It is also
understood that ℓ1 minimization problems can be transformed into a linear program-
ming problem [8], which can be efficiently solved by an interior point method [9]. On
the other hand, it is still of broad interest to improve the performance of the general
norm approximation problem, because in practical situations there is a strong need for
testing with various formulations with different norms in designing computer vision
applications. For example, one might initially formulate a regression problem with an
ℓ2-norm but later might add an ℓ1 or ℓ2 regularizer for stabilizing the solution.

This motivates us to develop a fast solver for the generalized norm approximation
problem:

min
x

K∑
k=1

λk ∥Akx− bk∥pk

pk
, (4)

where k = {1, · · · ,K} is the term index, Ak ∈ Rmk×n and bk ∈ Rmk are the design
matrix and constant vector that define the k-th linear objective, and the overall objective
function is defined as a linear combination of pk-th power of ℓpk

-norm weighted by λk.
Our method is built upon a simple yet powerful iteratively reweighted least-squares
(IRLS) scheme. In the IRLS scheme, the problem can be reduced to iteratively solving
a linear system that is derived as a normal equation of the sum of weighted squares of
the terms.

In this paper, we present a fast method for deriving the approximate solution for this
problem that outperforms the state-of-the-art solution methods such as [10, 11]. Our
method exploits the trait that the solution is gradually updated in an iterative manner in
the IRLS scheme, and achieves acceleration by taking the previous estimate as an initial
guess at each iteration. In addition, we show that a stable approximate solution for the
subproblem in the IRLS loop can be efficiently obtained via the LSQR method [12] in
comparison to other conventional least-squares methods such as the conjugate gradient
(CG) method. The proposed method is faster and more stable than the previous state-
of-the-art approaches as we are going to see in the experimental validation. In addition,
the solution method for the general expression (4) has not been explicitly described in
the literature that we are aware of, and we show in this paper that the general form can
be solved in a unique manner regardless of the number of terms and diverse ℓp-norm
objectives and benefit from the proposed method.

1 While it may be still valid even when p < 1, the problem becomes non-convex when p < 1;
thus they may be trapped by local minima.
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2 Related works

The early studies of IRLS can be found back in 1960’s [13], developed for approxi-
mating a Chebyshev or ℓ∞ norm. It has been later extended to approximate a general
ℓp-norm term [14]. While the early studies focus on convex approximations with p ≥ 1
mostly with a single term, later, the focus has been shifted to the case where p < 1 (non-
convex cases). The original sparse recovery using the IRLS scheme has been known as
FOCUSS [15] prior to that shift, and it has been known useful for robust estimation
tasks. With the rise of compressive sensing and sparse recovery, norm approximation
with p < 1 has been extensively studied. Chartrand and Yin [16] introduced a regular-
izer ϵ, for augmenting the IRLS weight, that varies from large to small over iterations
so that it effectively smooths out the objective function and as a result avoids local min-
ima. Daubechies et al. [10] proposed an alternative method for updating the weight over
iterations and showed the convergence property in sparse recovery. Candès et al. [17]
introduced an iteratively reweighted ℓ1 minimization method, which repeatedly solves
ℓ1 minimization problem, for further enhancing sparsity. Wipf and Nagarajan [18] pro-
vided an extensive analysis on ℓ2 and ℓ1 reweighting schemes ([16, 17]) and made dis-
tinction between separable (i.e., the weighting of a particular coefficient depends only
that in previous iteration) and non-separable iterative reweighting schemes. The devel-
opment of an effective numerical algorithm for sparse recovery is still an active research
topic, and there is a broad interest in the area.

With these theoretical and algorithmic development, the IRLS scheme has expanded
its application domain. It has been used for various signal processing applications, such
as FIR filter design [19], image deblurring with ℓp-norm (p = 0.8) minimization [20,
21], denoising based on TV regularization [22], and super-resolution [23]. The IRLS
scheme has also been used for minimizing nuclear norm [24] and structured sparse
recovery [25]. These new applications widen the use of IRLS scheme for even more
diverse applications. This paper is motivated by the background that accelerating the
general sum of ℓpp terms is urgent because of its increasing need in various computer
vision applications.

Because the problem of (4) is unconstrained and convex when pk ≥ 1, it can be
also solved via a family of efficient quasi-Newton methods, such as limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, although such general convex
optimizers are typically not optimal in terms of their performance.

3 Fast General Norm Approximation

This section describes the proposed method for general norm approximation using
IRLS. In Sec. 3.1, we begin with briefly reviewing the IRLS and show how the general-
ized form of Eq. (4) can be solved via IRLS. We then describe an acceleration method
using LSQR in Sec. 3.2.

3.1 IRLS for norm approximation problems

Since 1960’s, it has been understood that norm approximation problems can be solved
via IRLS [13, 14]. With the IRLS framework, norm approximation problems can be



4 Masaki Samejima and Yasuyuki Matsushita

casted to iteratively solving weighted least-squares problem. Let us take an example of
minimizing the p-th power of ℓp-norm of a real-valued vector (Ax− b):

min
x

f(x), f(x) = ∥Ax− b∥pp = (Ax− b)
⊤
W⊤W (Ax− b) . (5)

The above can be expressed by a weighted squares of the vector as:

min
x

f(x), f(x) = ∥W (Ax− b)∥22 , (6)

with a proper diagonal weight matrix W that is determined in IRLS, whose elements
are all non-negative. The problem of (6) is a quadratic programming; therefore, the
minimizer x∗ is attained when

∂

∂x
∥W (Ax− b)∥22 = 2p

(
A⊤W⊤WAx−A⊤W⊤Wb

)
= 0. (7)

Therefore, the approximate solution x∗ becomes

x∗ =
(
A⊤W⊤WA

)−1
A⊤W⊤Wb . (8)

In the IRLS scheme, the weight matrix W is iteratively refined for a more focal estimate.
Let wi and ei denote the i-th diagonal element of W and the i-th element of the residual
vector e = Ax− b, respectively. Since

∥Ax− b∥pp =
∑
i

|ei|p−2|ei|2 =
∑
i

w2
i |ei|2, (9)

at each iteration, the weight matrix element wi is updated by wi ← |ei|(p/2−1) if ei ̸= 0
or wi ← 1/ε otherwise where ε is a sufficiently small positive value. Typically, the
weight matrix W is initialized as an identity matrix.

IRLS for general norm approximation We have seen how ℓp-norm minimization for a
single term is achieved by IRLS. We now describe its extension to the multiple terms
for applying IRLS to the general norm approximation problem (4). For a general norm
approximation problem

min
x

f(x), f(x) =
K∑

k=1

λk ∥Akx− bk∥pk

pk
, (10)

there are K terms that are defined by ℓpk
-norm, where pk may be different across the

terms, each weighted by λk. With K weight matrices Wk, it can be approximated by

f(x) =

K∑
k=1

λk (Akx− bk)
⊤
W⊤

k Wk (Akx− bk) , (11)

in a similar manner to the single term case. From the normal equation of above, the
approximate solution can be determined by differentiating f(x) w.r.t. x as

∂f(x)

∂x
=

K∑
k=1

2pkλk

(
A⊤

k W
⊤
k WkAkx−A⊤

k W
⊤
k Wkbk

)
= 0. (12)
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Therefore, the minimizer x∗ can be obtained by

x∗ =

(
K∑

k=1

pkλkA
⊤
k W

⊤
k WkAk

)−1( K∑
k=1

pkλkA
⊤
k W

⊤
k Wkbk

)
. (13)

The pseudo-code of IRLS for general norm approximation is summarized in Algo-
rithm 1.

Procedure 1 IRLS for general norm approximation
Input: Ak ∈ Rmk×n and bk ∈ Rmk

Output: Approximate solution x
// Initialize the weight matrix
W1,W2, · · · ,WK ← I
// Concatenate matrices and vectors; A ∈ RM×n, b ∈ RM ,W ∈ diag

(
R+

M
)
,M =

∑
k mk

A←
[
A⊤

1 , A
⊤
2 , · · · , A⊤

K

]⊤
// Matrix of vertically stacked A1, · · · , AK

b←
[
b⊤1 , b

⊤
2 , · · · , b⊤K

]⊤
// Vector of vertically stacked b1, · · · , bK

while x is not converged do
W ← diag(

√
λ1p1W1,

√
λ2p2W2, · · · ,

√
λKpkWK)

// Solve the weighted least-squares problem: WAx = Wb
x← LeastSquares(WA,Wb)
e← Ax− b
// Update weight
for all k, n do

if ek(n) ̸= 0 then
Wk(n) = 1/|ek(n)|(1−pk/2)

else
Wk(n) = 1/ϵ // ϵ is a sufficiently small positive value.

end if
end for

end while

3.2 Acceleration of IRLS

The major bottleneck of the IRLS algorithm is its need for solving the weighted least-
squares problem over iterations until convergence. In particular, when the size of matrix
Ak is large, the computation cost significantly increases if an analytic solution method
like Eq. (13) is used. To accelerate the whole algorithm, it is needed to efficiently solve
the weighted least-squares problem. We exploit the fact that the solution x and weight
matrix Wk are gradually updated over iterations of IRLS and use the previous estimate
of x for efficiently updating the solution x using LSQR.

Previously, conjugate gradient methods have been applied to the least-squares prob-
lem in an iterative framework [26, 25] in a similar spirit. They are effective when the



6 Masaki Samejima and Yasuyuki Matsushita

10

100

1000

10000

100000

1x106

1x107

1x108

1x109

1 2 3 4 5 6 7 8 9 10

C
o

nd
iti

o
n 

nu
m

b
e

r

Iteration

500x400
1000x800

Fig. 1. Growth of the condition number of A in each iteration. The plots show the average condi-
tion numbers over ten trials for each setting.

design matrix A in ∥Ax − b∥22 is well-conditioned. Convergence of the conjugate gra-
dient method is analyzed by the relative error [27]:∥∥x− x(n)

∥∥
A∥∥x− x(0)
∥∥
A

≤ 2

(√
κ− 1√
κ+ 1

)n

, (14)

where ∥·∥A indicates A-norm, κ is matrix A’s condition number calculated by κ =
σmax(A)/σmin(A), σmax(A) and σmin(A) are the maximum and the minimum singular
values of A, respectively. When the relative error in the left side of Eq. (14) is large,
convergence from x(0) to x(n) through n iterations becomes slow. The upper bound
of the relative error can be calculated with κ, and a greater κ makes the convergence
slower. Unfortunately, for the weighted least-squares problem WAx = Wb in IRLS,
the condition number of matrix WA naturally increases as the iteration proceeds [26].
To depict this issue, we show a preliminary experiment of running IRLS for solving
minx ∥Ax−b∥22 ten times with randomly generated matrices A ∈ R500×400 with vector
b ∈ R500 and also a larger scale setting, A ∈ R1000×800 with vector b ∈ R1000. Figure 1
shows the variation of the average condition number over iterations plotted in a log
scale. As seen in the figure, the condition number grows exponentially over iterations,
which makes conjugate gradient methods slower and less stable in later iterations.

To overcome this issue, previous approaches use preconditioning to yield the equiv-
alent least-squares problem with the small condition number of A by multiplying a
matrix P called preconditioner [26, 25, 28]. However, the preconditioner P is problem-
dependent [25]; therefore, it is not straightforward to incorporate the preconditioned
conjugate gradient method into the generalized norm approximation problem.

To avoid these problems, we use the LSQR method [12], which is a stable iterative
method for ill-conditioned least-squares problems [29, 30]. In LSQR, the least-square
problem is reduced to another least-square problem including a bidiagonal matrix, and



Fast General Norm Approximation via Iteratively Reweighted Least Squares 7

the reduced problem is solved by QR factorization. To accelerate the LSQR computa-
tion in IRLS framework, we use a “warm start” strategy by taking the previous estimate
of the solution as the initial guess for the next iteration. The pseudo-code of LSQR to
find a solution x(i+1) at the (i+ 1)-th iteration from x(i) from the previous iteration in
our context is shown in Algorithm 2.

Procedure 2 LSQR
Input: A ∈ RM×n, x(i) ∈ Rn, and b ∈ RM

Output: Approximate solution x(i+1) ∈ Rn for minx ∥Ax− b∥22
// Initialization
β ←

∥∥∥b−Ax(i)
∥∥∥
2
, u←

(
Ax(i) − b

)
/β

α←
∥∥A⊤u

∥∥
2
, v ← A⊤u/α

ρ̄← β, ϕ̄← α
while x is not converged do

// Bidiagonalization
β ← ∥Av − αu∥2, u← (Av − αu) /β
α←

∥∥A⊤u− βv
∥∥
2
, v ←

(
A⊤u− βv

)
/α

// Construct and apply next orthogonal transformation
c← ρ̄/

√
ρ̄2 + β2, s← β/ρ

θ ← sα, ϕ← cϕ̄
ρ̄← −cα, ϕ̄← sϕ̄
// Update the approximate solution and weight
x← x+ wϕ/ρ
w ← v − wθ/ρ

end while
x(i+1) ← x

4 Performance Evaluation

To evaluate the computational efficiency of the proposed method, we test the algorithm
using the following weighted norms minimization problems:

(Problem 1) min
x
∥A1x− b1∥1 , (15)

(Problem 2) min
x
∥A2x− b2∥22 + ∥A3x− b3∥1 , (16)

where A1 ∈ R500×400, b1 ∈ R500 and A2, A3 ∈ R1000×800, b2, b3 ∈ R1000. Matrices
Ak and solution x are randomly generated, and vector bk is computed by bk ← Akx.
To add outliers to the systems, the signs of 10% of elements in bk are flipped.

We implement the following methods to compare the computational times on a PC
equipped with Intel Core i7 930 @2.8GHz and 24 GB Memory.

– L-BFGS
– IRLS by QR decomposition with column pivoting (IRLS-QR)
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Fig. 2. Variation of computation times over iterations. Our method benefits from the warm start
strategy and the computation time quickly drops at the early stage of iterations.
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– IRLS by Jacobi-preconditioned Conjugate Gradient method (IRLS-CG)
– IRLS by Jacobi-preconditioned Conjugate Gradient method with warm start (IRLS-

CG-WS)
– IRLS by LSQR (IRLS-LSQR)
– IRLS by LSQR with warm start (IRLS-LSQR-WS) (proposed method)

We use ALGLIB [31] for L-BFGS and Eigen [32] matrix library for matrix operations.
Because L-BFGS does not converge well on Problem 1 and Problem 2 that include
non-smooth ℓ1-norms, we approximate ∥A1x− b1∥1 to

√
∥A1x− b1∥22 + γ with a suf-

ficiently small positive value γ(= 10e−8) when applying L-BFGS.
Table 1 summarizes the average computation times and residuals of ten trials, and

Figs. 2 and 3 show computation times and residuals over iterations when solving Prob-
lems 1 and 2, respectively. As shown in Table 1, IRLS-based methods are faster and
more accurate than L-BFGS, even though we use a relaxed tolerance for L-BFGS for
faster convergence. Although IRLS-QR solves the smaller problem fast with the small-
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Table 1. Computation times and residuals of each method applied to Problems 1 and 2.

Problem 1 Problem 2
Computation

Residual
Computation

Residual
time [sec.] time [sec.]

L-BFGS 710∗ 741 > 1.0e5 –
IRLS-QR 5.6 642 137† 2456†

IRLS-CG 43 763 990† 2468†

IRLS-CG-WS 7.0 664 30 2468
IRLS-LSQR 54 721 634† 2620†

IRLS-LSQR-WS (ours) 2.6 682 14 2475
∗ Due to the enormous computational time of L-BFGS, we set the tolerance greater
(1.0e−6) than usual (1.0e−8).
† Because these methods did not converge, the computational times and residuals

at 100-th iteration are shown.

est residual, the computation time rapidly grows as the size of the matrix becomes
larger.

The effectiveness of the warm start strategy is clearly seen in IRLS by Conjugate
Gradient and LSQR, showing about 20 times faster convergence. As shown in Fig. 2,
while computation times for methods without warm start drastically increase as the
iteration proceeds, they are significantly reduced with warm start. It is also shown in
Fig. 3 that the warm start strategy is effective in reducing the residual by providing a
guide to solve least-squares with high condition numbers at later iterations.

5 Applications

The expression of the general norm approximation (4) offers flexibility of treating di-
verse objective functions in a unified manner, and they can generally benefit from the
proposed efficient computation method. As example use cases, we show two applica-
tions in this section: Photometric stereo in Sec. 5.1 and surface reconstruction from
normals in Sec. 5.2.

5.1 Photometric stereo

Photometric stereo is a method for estimating surface normal of a surface from its ap-
pearance variations under different lightings. Let us assume that we have an f × 3 light
direction matrix L that contains f distinct light directions as row vectors. A scene is
illuminated under these light directions, and it yields corresponding observation vector
o ∈ Rf

+ for each pixel. Assuming that the scene reflectance obeys the Lambert’s law,
the image formation model of a pixel can be expressed as can be expressed as

o = Ln, (17)

where n is an albedo-scaled surface normal vector that we wish to estimate. When the
number of light directions is greater than three (f > 3), the Lambertian photomet-
ric stereo [33] determines the scaled surface normal by the least-squares approximate
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Ground truth
(a) L2-norm 

minimization

Error 0.16 0.11 0.12 0.07

Time [sec.] 0.4 15 508 12

(b) L1-norm
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Time [sec.] 1.5 24 430 12
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Fig. 4. Surface normal estimates and error maps with photometric stereo. (a) - (d) correspond to
the settings (18) - (21). “Error” indicates the angular error in degrees, and “Time” corresponds to
the computation time.

solution as

n∗ = argmin
n
∥Ln− o∥22 . (18)

The solution method for the above problem is rather straightforward and does not even
require our method, while it can still be represented as a special case of (4).

In reality, scene reflectances may contain specularity that can be regarded as unmod-
elled outliers. It motivated the previous work [34, 35] to use an ℓ1-norm minimization
as robust estimation as

n∗ = argmin
n
∥Ln− o∥1. (19)



Fast General Norm Approximation via Iteratively Reweighted Least Squares 11

It corresponds to minimization of the residual e = o − Ln, as above can be rewritten
as the problem minn ∥e∥1 s.t. e = o − Ln. This hard constraint can be relaxed as a
regularizer as depicted in [34, 35] as

n∗ = argmin
n

λ1∥o− Ln− e∥22 + ∥e∥1 (20)

for allowing a certain magnitude of Gaussian error in the constraint.
In a special case, when we have an external method for determining surface normal,

e.g., surface normal obtained from a measured depth by structured light, and can use it
as prior for stabilizing the solution, the photometric stereo problem can be formulated
as

n∗ = argmin
n
∥Ln− o∥1 + λ2∥n− ng∥22, (21)

in which ng is surface normal that are obtained by an external method.
These four different problem settings (18) - (21) can all be represented by general

norm approximation (4), and our method is applicable to any of the settings. To demon-
strate this, we render 40 images of Bunny and Caesar scenes under different light di-
rections and solve these four problems. We set λ1, λ2 = 10e6. ng in (21) is generated
by adding 1% of Gaussian noise to every normal elements in the ground truth normal
vector. Figure 4 shows estimated surface normal and error maps of the proposed IRLS-
LSQR-WS method. Putting aside that there are variations in errors because of different
formulations, it shows that our method is applicable to diverse formulations.

5.2 Surface reconstruction from normals

Once the surface normal is obtained by photometric stereo or shape from shading, one
may like to reconstruct a surface from the normal, e.g., by [36]. From surface normal
n = (nx, ny, nz)

⊤ defined in the image coordinates (u, v), the gradient (gu, gv) can be
computed as

gu(u, v) =
nx(u, v)

nz(u, v)
, gv(u, v) =

ny(u, v)

nz(u, v)
. (22)

Let Gu, Gv ∈ Rm×n denote matrices of gu and gv , respectively. These gradient matri-
ces correspond to the 1-st order differentiation of the surface Z ∈ Rm×n to be recon-
structed. Therefore, with a differentiation matrix D ∈ R2mn×mn, the relationship can
be written as

Dz ≈ g, (23)



12 Masaki Samejima and Yasuyuki Matsushita

where

D =
1

h

[
Dx

Dy

]
, z = vec(Z) , g =

[
vec(Gu)
vec(Gv)

]
,

Dx =


B

B
. . .

B

 , Dy =


−I I
−I I

. . . . . .
−I I
I −I

 , B =


−1 1
−1 1

. . . . . .
−1 1
1 −1

 ,

with the identity matrix I . Similar to [37], we consider that there are outliers in normals
that are 10 times larger than true normals and 10% of pixels are corrupted by them. In
this setting, we consider the ℓ1-residual minimization to reconstruct the surface in the
presence of outliers as

min
z
∥Dz − g∥1 . (24)

This problem, again, is a special case of the general norm approximation problem (4),
and our method can be applied to derive the approximate solution z. We use three
different scenes, Bunny, Dragon, and Happy Buddha as target scenes for testing this
scenario. For comparison, we show the result of surface reconstruction by ℓ2-norm
minimization as reference.

Figure 5 shows the reconstructed surfaces, ℓ2-residual from the ground truth, and
computation times. The accuracy indicates the strength of ℓ1-residual minimization, but
more importantly, our method is capable of handling any of these formulations because
of the generalized form of norm minimization (4).

6 Conclusions

We presented a fast general norm approximation that can be applicable to diverse prob-
lem settings in computer vision. The proposed method (IRLS-LSQR-WS) is assessed
in comparison to other state-of-the-art techniques and shows the favorable computation
efficiency and accuracy at a time. In addition to the numerical tests, we show applica-
tion scenarios by taking photometric stereo and surface reconstruction as examples to
illustrate the usefulness of the general norm approximation.

During the experiments, we found that the proposed method is advantageous over
IRLS-CG-WS in terms of stability, i.e., IRLS-CG-WS occasionally becomes unstable
when the condition number of the problem grows rapidly, while the proposed method
does not suffer from this issue. On the other hand, IRLS-CG-WS tends to converge
slightly faster when the design matrix A is sparse compared to the proposed method.
We are interested in studying this trade-off by characterizing the problem by looking
into the design matrix structure. In addition, further acceleration by preconditioning for
LSQR [38] is another interesting venue to investigate.
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Input Ground truth
L2-norm
minimization IRLS-LSQR-WS

L2 Residual from ground truth 33.7 10.4

Computational time [sec.] 4.5 124.9

L2 Residual from ground truth 14.8 11.9

Computational time [sec.] 6.4 168.1

L2 Residual from ground truth 49.5 5.7

Computational time [sec.] 2.2 56.2

With reflection

Fig. 5. Surface reconstruction from normal maps by the proposed method (IRLS-LSQR-WS)

References

1. Lu, M., Zheng, B., Takamatsu, J., Nishino, K., Ikeuchi, K. In: 3D Shape Restoration via
Matrix Recovery. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 306–315

2. Futragoon, N., Kitamoto, A., Andaroodi, E., Matini, M.R., Ono, K. In: 3D Reconstruction
of a Collapsed Historical Site from Sparse Set of Photographs and Photogrammetric Map.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 286–295

3. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tics Society B. 58 (1996) 267–288

4. Tikhonov, A.N., Arsenin, V.Y. In: Solution of Ill-posed Problems. Winston & Sons., Wash-
ington (1977) ISBN 0-470-99124-0.

5. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the
Royal Statistics Society B. 67 (2005) 301–320

6. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards 49 (1952)



14 Masaki Samejima and Yasuyuki Matsushita

7. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review 53 (2011)
217–288

8. Gentle, J.E. In: Matrix Algebra: Theory, Computations, and Applications in Statistics.
Springer-Verlag New York (2007) ISBN 978-0-387-70872-0.

9. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica
4 (1984) 373–395

10. Daubechies, I., DeVore, R., Fornasier, M., Gunturk, S.: Iteratively re-weighted least squares
minimization: Proof of faster than linear rate for sparse recovery. In: 42nd Annual Confer-
ence on Information Sciences and Systems. (2008) 26–29

11. Aftab, K., Hartley, R.: Convergence of iteratively re-weighted least squares to robust m-
estimators. In: 2015 IEEE Winter Conference on Applications of Computer Vision. (2015)
480–487

12. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Softw. 8 (1982) 43–71

13. Lawson, C.L.: Contributions to the theory of linear least maximum approximations. PhD
thesis, UCLA (1961)

14. Rice, J.R., Usow, K.H.: The lawson algorithm and extensions. Mathematics of Computation
22 (1968)

15. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a
re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing 45 (1997)
600–616

16. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proc.
of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
(2008) 3869–3872

17. Candès, E.J., Wakin, M.B., Boyd, S.: Enhancing sparsity by reweighted ℓ1 minimization.
Journal of Fourier Analysis and Applications 14 (2008) 877–905

18. Wipf, D.P., Nagarajan, S.: Iterative reweighted ℓ1 and ℓ2 methods for finding sparse so-
lutions. Journal of Selected Topics in Signal Processing (Special Issue on Compressive
Sensing) 4 (2010)

19. Burrus, C.S., Barreto, J., Selesnick, I.W.: Iterative reweighted least-squares design of fir
filters. IEEE Transactions on Signal Processing 42 (1994) 2926–2936

20. Levin, A., Fergus, R., Durand, F., Freeman, W.: Image and depth from a conventional camera
with a coded aperture. Proc. of SIGGRAPH (ACM Trans. on Graph.) 26 (2007)

21. Joshi, N., Zitnick, L., Szeliski, R., Kriegman, D.: Image deblurring and denoising using
color priors. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
(2009)

22. Wohlberg, B., Rodrı́guez, P.: An iteratively reweighted norm algorithm for minimization of
total variation functionals. IEEE Signal Processing Letters 14 (2007) 948–951

23. Liu, C., Sun, D.: On bayesian adaptive video super resolution. IEEE Transactions on Pattern
Analysis and Machine Intelligence 36 (2014) 346–360

24. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. Journal
of Machine Learning and Representation 13 (2012) 3441–3473

25. Chen, C., Huang, J., He, L., Li, H.: Preconditioning for accelerated iteratively reweighted
least squares in structured sparsity reconstruction. In: Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). (2014) 2713–2720

26. Fornasier, M., Peter, S., Rauhut, H., Worm, S.: Conjugate gradient acceleration of iteratively
re-weighted least squares methods. Computational Optimization and Applications (2016)
1–55

27. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing
pain. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA (1994)



Fast General Norm Approximation via Iteratively Reweighted Least Squares 15

28. Howell, G.W., Baboulin, M.: LU Preconditioning for Overdetermined Sparse Least Squares
Problems. In: 11th International Conference on Parallel Processing and Applied Mathemat-
ics: Revised Selected Papers, Part I. Springer International Publishing (2016) 128–137

29. Benbow, S.J.: Solving generalized least-squares problems with LSQR. SIAM Journal on
Matrix Analysis and Applications 21 (1999) 166–177

30. Nolet, G.: Solving large linearized tomographic problems. In: Seismic Tomography, theory
and practice. Chapmanand Hall (1993) 227–247

31. Bochkanov, S., Bystritsky, V.: Alglib. http://www.alglib.net/ (2008)
32. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
33. Woodham, R.J.: Photometric method for determining surface orientation from multiple im-

ages. Optical engineering 19 (1980) 191139–191139
34. Wu, L., Ganesh, A., Shi, B., Matsushita, Y., Wang, Y., Ma, Y.: Robust photometric stereo via

low-rank matrix completion and recovery. In: ACCV. (2011) 703–717
35. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo via low-rank

matrix completion and recovery. In: Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). (2012)

36. Harker, M., O’leary, P.: Regularized reconstruction of a surface from its measured gradient
field. J. Math. Imaging Vis. 51 (2015) 46–70

37. Reddy, D., Agrawal, A.K., Chellappa, R.: Enforcing integrability by error correction us-
ing l1-minimization. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). (2009) 2350–2357

38. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging lapack’s least-squares
solver. SIAM J. Sci. Comput. 32 (2010) 1217–1236


