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In this supplemental material

A. we derive the shadow formation equations (2) and (4) from the paper,
B. we derive the linear relaxation equations (7) and (9) from the paper,
C. we show estimation accuracies from a simulation experiment where we si-

multaneously applied shadow position noise and board pose noise and varied
the number of poses Np and number of casters Nc, and

D. we provide the calibration pattern for estimating the board pose.

In addition, we also submit a video that demonstrates how simple it is to build
and use the proposed calibration target and procedure.

A Derivation of shadow formation equations (2) and (4)

A.1 Near point light – Equation (2)

Inserting c = [cx, cy, cz]
>, s̄ = [sx, sy, 0]>, and l = [lx, ly, lz]

> (all in non-
homogeneous 3D global world coordinates) into Eq. (1) yields

(c− s̄)× (l− s̄) =

cx − sxcy − sy
cz − 0

×
lx − sxly − sy
lz − 0

 = 0.

Expanding the cross-product yields
(cy − sy)lz − cz(ly − sy) = 0,

cz(lx − sx)− (cx − sx)lz = 0,

(cx − sx)(ly − sy)− (cy − sy)(lx − sx) = 0,

From this it follows that 
sx =

cxlz − czlx
lz − cz

,

sy =
cylz − czly
lz − cz

.
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We can then write s in homogeneous coordinates using a scaling parameter γ:

γŝ =

 cxlz−czlx
lz−cz

cylz−czly
lz−cz

1



⇐⇒ γ(lz − cz)︸ ︷︷ ︸
−λ

ŝ =

cxlz − czlxcylz − czly
lz − cz

 =

lz 0 −lx 0
0 lz −ly 0
0 0 −1 lz


︸ ︷︷ ︸

−L


cx
cy
cz
1


︸ ︷︷ ︸

ĉ

. �

Further, the decomposition of L into an intrinsic and an extrinsic matrix can be
verified by multiplication of the intrinsic and the extrinsic matrices.

A.2 Distant light – Equation (4)

Inserting c, s̄, and l into Eq. (3) yields

(c− s̄)× l =

cx − sxcy − sy
cz − 0

×
lxly
lz

 = 0.

Expanding yields 
(cy − sy)lz − czly = 0,

czlx − (cx − sx)lz = 0,

(cx − sx)ly − (cy − sy)lx = 0,

from which it follows that 
sx =

cxlz − czlx
lz

,

sy =
cylz − czly

lz
.

We can then write s in homogeneous coordinates using a scaling parameter γ:

γŝ =

 cxlz−czlx
lz

cylz−czly
lz
1



⇐⇒ γlz︸︷︷︸
−λ

ŝ =

cxlz − czlxcylz − czly
lz

 =

lz 0 −lx 0
0 lz −ly 0
0 0 0 lz


︸ ︷︷ ︸

−L


cx
cy
cz
1


︸ ︷︷ ︸

ĉ

. �
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B Derivation of linear relaxation equations (7) and (9)

B.1 Near point light – Equation (7)

With cj = [cj,x, cj,y, cj,z]
>

, s̄ij = [sx, sy, 0]
>

, R>i =
[
r0 r1 r2
r3 r4 r5
r6 r7 r8

]
, l = [lx, ly, lz]

>
, and

−R>i ti = [tx, ty, tz]
>

, we can rewrite Eq. (6) as

(cj − s̄ij)× (R>i l−R>i ti − s̄ij) =

cj,x − sxcj,y − sy
cj,z

×
[r0, r1, r2] l + tx − sx

[r3, r4, r5] l + ty − sy
[r6, r7, r8] l + tz

 = 0.

Expanding the cross-product yields
(cj,y − sy)([r6, r7, r8] l + tz) − cj,z ([r3, r4, r5] l + ty − sy) = 0,

cj,z ([r0, r1, r2] l + tx − sx)−(cj,x − sx)([r6, r7, r8] l + tz) = 0,

(cj,x − sx)([r3, r4, r5] l + ty − sy)−(cj,y − sy)([r0, r1, r2] l + tx − sx) = 0,

which we can rewrite as{ −sytz =−cj,y([r6,r7,r8] l + tz) + sy [r6,r7,r8] l + cj,z([r3,r4,r5] l + ty − sy),

sxtz =−cj,z([r0,r1,r2] l + tx − sx) + cj,x([r6,r7,r8] l + tz)− sx [r6,r7,r8] l,

−sxty+sytx=−cj,x([r3,r4,r5] l+ty−sy)+sx[r3,r4,r5] l+cj,y([r0,r1,r2] l+tx−sx)−sy [r0,r1,r2] l,

which can then in turn be rewritten in the matrix form of Eq. (7).

B.2 Distant point light – Equation (9)

Keeping the definitions of cj , s̄ij , R
>
i , and −R>i ti, we can rewrite Eq. (8) as

(cj − s̄ij)×R>i l =

cj,x − sxcj,y − sy
cj,z

×
[r0, r1, r2] l

[r3, r4, r5] l
[r6, r7, r8] l

 = 0.

Expanding the cross-product yields
(cj,y − sy) [r6, r7, r8] l− cj,z [r3, r4, r5] l= 0,

cj,z [r0, r1, r2] l− (cj,x − sx) [r6, r7, r8] l= 0,

(cj,x − sx) [r3, r4, r5] l− (cj,y − sy) [r0, r1, r2] l= 0.

After setting l = [lx, ly, 1]
>

, we can rewrite this as
(cj,y − sy)(r6lx + r7ly + r8)− cj,z (r3lx + r4ly + r5) = 0,

cj,z (r0lx + r1ly + r2)− (cj,x − sx)(r6lx + r7ly + r8) = 0,

(cj,x − sx)(r3lx + r4ly + r5)− (cj,y − sy)(r0lx + r1ly + r2) = 0, and

{ −syr8 = −cj,y(r6lx + r7ly + r8) + sy(r6lx + r7ly) + cj,z(r3lx + r4ly + r5),

sxr8 = −cj,z(r0lx + r1ly + r2) + cj,x(r6lx + r7ly + r8)− sx(r6lx + r7ly),

syr2 − sxr5 = −cj,x(r3lx + r4ly + r5) + sx(r3lx+r4ly) + cj,y(r0lx+r1ly+r2)−sy(r0lx+r1ly),

which can then be rewritten in the matrix form of Eq. (9).
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C Simulation experiment for combined shadow position
and board pose noise

In Sec. 4.1, we studied the effect of shadow position errors and board pose
errors separately. In this section we show simulation results where we added
both shadow position noise and board pose noise at the same time.

In the top rows of Figs. 7 and 8 we can see that shadow position noise causes
errors roughly twice as big as those from board pose noise. In this experiment
we thus set the standard deviation for shadow position noise to σshadows = 0.01
and for board pose noise to σpose = 0.005.

For the number of shadow casters varying from 1 to 9 and the number of poses
varying from 5 to 100, Figure C.1 shows color-coded (log-scale) median error in
the top row and standard deviation in the bottom row. Again, bundle adjustment
and more poses and casters decrease the error. If the application at hand dictates
one of the two parameters, e.g ., if time restrictions forbid increasing Np beyond
20, this can always be countered by increasing the other parameter.

Even though the minimal conditions for solving the calibration are 1 caster
and 4 or 5 poses, the data suggests that one should probably never use less
than 3 casters and less than 10 or better yet 20 poses. For example the standard
deviation for 1 or 2 casters and 5 poses is probably unbearably high. In the paper
we showed that 5 casters and 20–50 poses (which can be obtained quickly in our
experience) produce an accuracy superior to related work.
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Fig. C.1. Estimation error for synthetic near and distant light with Gaussian noise
added to shadow positions (σshadows = 0.01) and board orientation in degrees (σpose =
0.005). Np is on the x-axis and Nc is on the y-axis. For each data point we performed
500 random trials. Top row: The median of the absolute error (near light)/angular
error in degree (distant light). Bottom row: The error’s standard deviation.




