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From Intensity Profile to Surface Normal:
Photometric Stereo for Unknown Light Sources
and Isotropic Reflectances

Feng Lu, Yasuyuki Matsushita, Imari Sato, Takahiro Okabe, and Yoichi Sato

Abstract—We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our
method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional
illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between
intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of
the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation;
one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while
the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and
real-world scenes, which show the state-of-the-art accuracy of smaller than 10° without using reference data and 5° with reference

data for all 100 materials in MERL database.

Index Terms—Uncalibrated photometric stereo, general reflectance, BRDF, intensity profile

1 INTRODUCTION

HOTOMETRIC stereo recovers surface normals of a

scene from a set of images recorded under varying
lighting conditions. A variety of methods have been
proposed in the literature under the assumptions of
Lambertian reflectance and known lighting directions.
These assumptions, however, greatly limit the applica-
bility of photometric stereo, because real-world scenes
exhibit more general reflectances and precise calibration
of lighting directions is laborious in practice. Therefore,
it is desired to develop a technique that works with gen-
eral surface reflectance and unknown lighting directions
simultaneously with good accuracy.

In most photometric stereo approaches, observed in-
tensities are treated as independent measurements rather
than ordered measurements. The ordered measurements
offer additional information that cannot be found in the
un-ordered measurements as demonstrated by clustering
of surface normals [1]. The strength of the ordered
measurements in photometric stereo has been shown by
some previous approaches [2], [3], [4], [5]. These previ-
ous methods make use of an intensity profile, which is a
sequence of radiance intensities recorded at a pixel under
varying lightings. These methods are shown effective
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under individual assumptions: calibrated light directions
and Lambertian reflectance assumption for [4], known
occluding boundaries [3], and calibrated reference object
with the same reflectance property [2].

In this paper, we further exploit the observations on
intensity profiles to develop two methods for accurate
surface normal estimation from a scene with general
and unknown isotropic reflectances observed under un-
known lighting directions. Our methods are built upon
the notion of conditional linearity . In particular, we show
that there exist two strong relations: one between the
geodesic distance of intensity profiles and the angular
difference of surface normals, and the other between
the intensity distribution of intensity profiles and sur-
face reflectance property. We investigate these relations
quantitatively and develop a technique that recovers
surface normals purely from intensity profiles (Sec. 3).
We also develop the second method in the case where
a database of bi-directional reflectance distribution func-
tions (BRDFs) is available. For this setting, we present a
technique that recovers not only surface normals but also
unknown light sources with improved accuracy (Sec. 4).

Our methods make the following assumptions: (1) di-
rectional light sources of the same intensity are uni-
formly positioned around the target surface, (2) the test
surface is made of a uniform reflectance up to scaling.
We begin with these assumptions for development of
the method; however, later in this paper, we show that
they can be relaxed to some extent. In addition to
these assumptions, we assume a common orthographic
camera and exclude extreme cases where the test surface
contains only a few planar regions. With these assump-
tions, our method is able to recover surface normals up
to a binary convex/concave ambiguity.
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Our methods have the following advantages over the
previous approaches. First, our methods handle both un-
calibrated light sources and general isotropic reflectances
simultaneously; therefore, both of the two proposed
methods remove the conventional assumptions about
known lighting directions and reflectances. Second, by
using a MERL BRDF database [6], our second method
is able to estimate lighting directions as well as mate-
rial and surface normals, which has been difficult with
previous methods. Third, derived surface normals have
only a binary convex/concave ambiguity, while general
uncalibrated photometric stereo methods suffer from
generalized bas-relief (GBR) ambiguity [7]. Our average
normal estimation error evaluated for 100 real-world
materials is smaller than 10° without BRDF database (the
first method) and smaller than 5° with BRDF database
(the second method).

1.1 Previous work

A variety of previous studies have been conducted to re-
lax the assumptions of the Lambertian reflectance model
and known lighting directions in photometric stereo.
Non-Lambertian reflectances have been handled either
by regarding non-Lambertian components as outliers, or
using more general reflectance models. The former class
of methods finds non-Lambertian observations in a ro-
bust estimation framework using color-cues [8], median
filter [9], rank-minimization [10], sparse regression [11],
or Markov random field [12]. The latter class of methods
studies reflectance properties, such as bilateral symme-
try [13], reflective symmetry about the halfway vec-
tor [14], isotropy and monotonicity [15], [16], and other
reflectance symmetries [17]. There are methods that use
complex parametric models, such as ones that use the
Ward model [18], [19], Lambertian+specular models [20]
and bi-variate BRDF representation [21]. These methods
assume that the lighting directions are known.

There are uncalibrated photometric stereo techniques
assuming unknown lighting directions. Most of the ex-
isting methods attempt to resolve the Generalized Bas-
Relief (GBR) ambiguity [7] with the Lambertian mod-
el. Various surface properties are used such as diffuse
maxima [22], specularity [23], [24], low-dimensional s-
pace [25], minimum entropy [26], interreflections [27],
color profiles [28], reflectance symmetry [17], holistic
reflectance symmetry [29], and certain configurations
of the light sources [30]. If considering the perspective
projection case, camera calibration can solve the ambigu-
ity [31]. These methods rely on the assumption that the
diffuse reflectance component obeys the Lambertian law.
Therefore, the applicability to real-world surfaces that
have non-Lambertian diffuse components is restricted.

Handling both non-Lambertian reflectances and un-
calibrated light sources simultaneously is far more chal-
lenging and has been less studied. Silver [32] and
Hertzmann and Seitz [2] capture reference objects with
known and proper reflectances together with the target
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Fig. 1. lllustration of intensity profiles. Surface points A,
B, and C have the same reflectance, but D is different. A,
C, and D have the same surface normal, while B has a
different normal.

scene, while Ren et al. [33] captures a well-designed
calibration board with multiple reference materials and
shapes. These methods use intensity values of reference
objects to determine surface normals of the test scene.
Because reference objects are captured with the test
scene, the effect of uncalibrated light sources is eliminat-
ed. Georghiades [34] uses the Torrance-Sparrow model
and proposes to optimize over a large set of variables.
Chandraker et al. [35] recover surface iso-contours from
images taken under light sources positioned in a ring. An
initial normal needs to be assigned to determine surface
normals. Sato et al. [3] use the similarity of intensity
profiles to recover the normal difference with the as-
sumptions about uniform light sources and Lambertian
or Torrance-Sparrow reflectance models. Okabe et al. [36]
use attached shadow codes to deal with general BRDFs
under dense and uniform light sources. Both of the two
methods require visible occluding contours for resolving
the ambiguity. Unlike these methods, our method does
not require any reference objects being captured under
the same lights with the test scene, and assumes none
of initial normals, certain reflectance models, visible
occluding contours, or strictly uniform light sources.

2 INTENSITY PROFILES FOR PHOTOMETRIC
STEREO

An intensity profile is a sequence of radiance intensities
recorded at a pixel across varying lighting conditions. It
has been used in various contexts due to its useful prop-
erties when assuming distant lightings, no cast shadow,
and no inter-reflections.

Orientation-consistency: Intensity profiles become ex-
actly the same, if and only if they correspond to the
same surface normal and material (A and C in Fig. 1).
Using this simple observation, surface normals can be
determined by looking up a pre-stored table indexed
with surface brightness values [32], or match the inten-
sity profiles to those from a reference object that is made
of the same material [2].

Geometry-extrema: For isotropic BRDFs, intensity pro-
files reach the extremas synchronously, if and only if
they correspond to the same surface normal (A and D in
Fig. 1) even for scene points with different materials. This
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observation is used for clustering surface orientations [1]
without determining the exact orientations.

Similarity: Similarity of two intensity profiles is strongly
related to the angular difference between two surface
normals for the same material (A and B in Fig. 1).
Sato et al. [3] analyze this relationship and recover
surface normals in the cases of Lambertian and Torrance-
Sparrow reflectances illuminated under evenly distribut-
ed light directions with an assumption of known occlud-
ing boundaries.

This paper makes a further observation about inten-

sity profiles and introduces the property of conditional
linearity. Unlike [3], we do not restrict our analysis to
certain reflectance models. Instead, we take into account
more general isotropic reflectances such as materials in
the MERL BRDF database [6].
Conditional linearity: For various real-world isotropic
reflectances, we observe a strong linear relation between
the distance among intensity profiles seen under evenly
distributed lightings and the angular difference of sur-
face normals, up to a certain normal angular difference.
We also observe that the linear coefficient is material-
dependent and closely related to the intensity distribu-
tion of the intensity profiles. These observations allow
us to develop uncalibrated photometric stereo methods
that work with unknown isotropic reflectances.

2.1

Let us now assume evenly distributed but unknown
light directions and a scene with a uniform material; we
show later that these assumptions can be relaxed to some
extent. Let n,, n, € R3*! be a surface normal pair at pixel
locations p and ¢, and {I,,I,} be the corresponding pixel
intensity profiles in a normalized form as:

1, = [, 11" = [i;,...j,fr/\/zl(fg,)2 .M

where I;l, is the recorded intensity at the p-th pixel for a
scene point (p = 1,..., P), under the I-th lighting direc-
tion (I =1,...,L), and III) is the normalized intensity.

Previous methods have shown that the similarity
of intensity profiles and surface normals are strongly
correlated [1], [3]. Similarity can be defined using the
Euclidean distance of two intensity profiles as ||I, —I,]|2
in a straightforward manner. It indeed correlates with
the angular difference cos™!(n)n,) of surface normals
n, and n, at scene points p and ¢; however, this linear
relationship only holds in a limited range as depicted
in Fig. 2 (left). To extend the range, our method uses a
geodesic distance dg(I,,1,) instead of ||I, — I |2 as it
is used in [3] to measure the similarity of more distinct
normals (Fig. 2 (right)).

The geodesic distance corresponds to the distance of
the shortest path between two nodes in a graph, which
is computed by adding up the Euclidean distances of
neighboring nodes along the path [37]. Here we refer
to “neighbors” in the space of intensity profiles rather
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Fig. 2. Using geodesic distance (right) preserves a linear
relationship over a greater range of angular differences in
comparison with using Euclidean distance (left).
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Fig. 3. Examples of the linear relationship. Top: four
typical distributions and their partial linear fittings (solid
lines) are shown under uniform lightings. Dotted lines
show non-uniform light cases. Bottom: setting different
angular threshold o varies the estimation errors.

than pixel coordinates. In our case, we first compute
Euclidean distances between all possible combinations
of intensity profiles I, and I, as

HIp _Iq||2
“+o00

if [T, —Igllz <ep

otherwise,

d(Ip,1y) = { )

where each I,, determines a threshold ¢,; it is empirically
set to the 10-th shortest distance from this I, to all
other I,. Then geodesic distance between I, and I, is
computed using the pre-computed Euclidean distances
{d(I,,1,)} as

di(Lu, 1) = Dep({d(Ip, 1g)}), ®)

where function D,,(-) applies a Dijkstra’s algorithm to
find the shortest path that connects I,, and I, and adds
up multiple d(I,,I,) along the path. In this manner, in
the geodesic distance, linearity is locally well preserved
and extended to a greater range of angular differences
as shown in Fig. 2 (right).
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We examine this linearity for all 100 materials in the
MERL BRDF database [6] by plotting the angular dif-
ferences cos~!(nln,) and geodesic distances dg(1,,1,).
Fig. 3 shows four typical plots, from which we can make
the following observations. First, the use of geodesic
distance generally shows the greater linear relationship
to the angular difference of normals in a larger range.
Second, for most materials, even those having complex
reflectances, the linearity still largely holds in the range
of [0°,70°] of the angular difference, while it does not
span the entire range for many materials. Finally, the
linear coefficient, or slope, varies with the material (solid
lines). The slope is insensitive to random noise in light-
ing directions as shown by the dotted lines in Fig. 3,
which are the line fittings to the plots produced with
fluctuating light directions by 7° standard deviations.
A more thorough analysis on the linearity under non-
uniform light distributions is given in Sec. 5.1.

Interestingly, the first case in Fig. 3 is actually the
problem solved in [3], which corresponds to an ideal
subset of the more general reflectances. Based on the
above observations, we define a partial linear conversion
from the geodesic distance dg(I,,I,) to the angular
difference of surface normals cos~!(nln,) in a certain
range bounded by a threshold ¢ as

cosfl(n;fnv) ~ amda(L,, L) if cosfl(nznv) <4 (@)

While the result is not sensitive to the choice of thresh-

old ¢, extreme values should be avoided. We examine
the error across varying ¢ in the bottom of Fig. 3. It
shows that for non-diffused materials, § should be set
no larger than 7/4 to guarantee a good estimation. As
for the material-dependent slope «,,, the inference of
oy, enables us to eliminate the necessity of the known
occluding boundary assumption that is used in [3] as we
will see later in this paper.

2.2 Material reflectance property

The linear coefficient «,, described in the previous
section is material-dependent, i.e., it is related to the
surface reflectance property of a material. To characterize
such a reflectance property, we begin with showing that
the intensity distribution observed in an intensity pro-
file conveys information about the reflectance property.
Fig. 4 shows four intensity profiles, where each row
corresponds to the same material but different surface
normals. These figures indicate that an intensity profile’s
shape depends on both reflectance and surface normal.
On the other hand, its intensity distribution appears
stable against surface normal changes while it varies
with materials as shown in Fig. 4.

Based upon this observation, we develop a new mea-
sure for characterizing the relationship between the
intensity distribution and the corresponding material.
The intuitive examples in Fig. 4 suggest that a shinny
material shows a biased distribution due to sporadic
specular observations compared to a more symmetric
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Fig. 4. Intensity profiles w.r.t. material and surface normal.
The top row shows intensity profiles of a specular surface
recorded at two distinct surface normals. The bottom row
shows those of a diffuse surface. The intensity distribu-
tions are plotted on their right-hand side.

distribution from a diffused material. We therefore use
skewness for characterizing the relationship. The skew-
ness vy of an intensity distribution, which is invariant to
the intensity/lighting order, is calculated as

W= S0/ (). e

where I is an intensity profile, and I' is its [-th element
that corresponds to the I-th observation under the L
lighting direction. If we look at examples in Fig. 4 again,
the skewness value is large for the shiny material and
is small for the matte one. Therefore, we quantitatively
examine the relationship between the skewness of the
intensity distributions and the linear coefficient o'

To verify the effectiveness of the skewness measure,
we render a spherical surface under varying numbers of
light directions (162 and 42) using all the 100 materials in
MERL BRDF database. The skewness values v computed
from all pixels and inverse slopes «;,' are plotted in
Fig. 5. As we see in the figure, they have a strong
linear relationship, which in fact yields the correlation
coefficient of 0.99. Our experiment shows that varying
numbers of light directions show nearly identical linear
relations. From this result, we use the skewness of the
intensity distribution for estimating o, of the unknown
material using the linear relationship in Fig. 5, and it
results in constraining Eq. (4).

2.3 Photometric stereo using intensity profiles

The two linear relationships described in the previous
sections 2.1 and 2.2 are our key findings in this paper.
Based on them, we develop two uncalibrated photo-
metric stereo methods that work for unknown isotropic
BRDFs. We begin with the case where only intensity
profiles are available in Sec. 3, and extend the method
for the case where a database of BRDFs is available
in Sec. 4. We denote the former method as a method
without reference data, and the latter as a method with
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Fig. 5. Relationship between skewness values and a;,*
values of 100 materials. The correlation coefficients are
0.99 (Top/bottom: 162/42 light directions)

reference data. The method without reference data uses
the two linear relationships to quantitatively convert the
observed intensity profiles into surface normals, while
the method with reference data casts the original prob-
lem into a matching of intensity profiles, where its search
space is bounded by the two linear relationships.

In practice, they can be applied in accordance with
the scenarios: quick implementation without a pre-stored
database, or simultaneous light source recovery and a
generally better guaranteed accuracy (Sec. 5).

In what follows, we begin with describing the method
without reference data to explain how surface normals
can be determined only from intensity profiles. Then we
describe the method with reference data, in which the
problem can be more constrained.

3 SURFACE NORMAL ESTIMATION WITHOUT
REFERENCE DATA

We describe our first method for recovering surface
normals only from the intensity profiles without ref-
erence data. From the observed intensity profiles, we
compute geodesic distance d¢(I,,1,) using Egs. (2) and
(3). We then convert dg(I,,I,) into a normal angular
difference cos™'(nln,) using Eq. (4). As discussed in
the previous section, since the conversion is valid only
when cos™!(nln,) < § holds, we rewrite Eq. (4) as the
following:

mde(Lu, In) if amde(Ly,L,) <6
Cosqngnv):{ (L 1) if amdei(L, L)

Undefined

otherwise,

(6)
where o, is obtained using the skewness measure, and
threshold ¢ is set to m/4 to ensure good linear regions
for diverse classes of materials as discussed in Sec. 2.1.

3.1 Formulation

We wish to recover surface normals of scene points
that correspond to P pixels in the observed im-
age from a set of images taken under varying un-
known lightings. Let the surface normal matrix be

N =[n; |ny|...|np] € R¥**F that we solve for. We de-
fine the observation matrix O as

O = [Ou,v = nEnU]PXP S RPXPa (7)

whose elements o, ,(= nln,) are readily obtained from

Eq. (6). The diagonal elements o, , in O are all ones,
which ensures the unit normal length for {n,}. Equa-
tion (6) has undefined cases for some u and v; therefore,
not all O’s elements have well-defined values. In other
words, the observation matrix O has missing elements.
With a matrix E that accounts for the errors due to the
missing entries, the relationship between the observation
matrix O and surface normal N can be written as

O=NTN+E. (8)

We wish to solve for surface normal N by using the
incomplete observation matrix O and unknown but
sparse error matrix E.

3.2 Matrix decomposition with missing data

Solving Eq. (8) for IN involves recovering and decom-
posing the incomplete observation matrix O. We use
a matrix A for A = NTN, where we know that
rank(A) = 3 since rank(IN) = 3. Let 2 be a set of
indices where o,,, has a defined value in O, and let its
complement set be Q°. By restricting the error matrix E
only to account for the missing entries 2¢, the original
problem of Eq. (8) can be written as

argmin |A — O + E||% s.t. rank(A) =3, ®q(E) =0,
A
)

where @, (F) is an operator that only keeps E'’s entries
in © unchanged and sets others zero. We solve the prob-
lem of Eq. (9) by alternately estimating A and E. The
optimization begins by initializing E = 0 and setting the
missing entries of O to zeros so that ®q-(O) = 0.

At the k-th iteration, we update Ay, by singular
value decomposition (SVD) as

USVT « SVD(O — Ey),

10
A< U S Iz 0 VT:US(:),)VT, (10
0O O
where Ay, is reconstructed using only the first three
singular values of S to ensure rank(Ay 1) =3. I(3) is a
3 x 3 identity matrix. We then update Ej; by

Ek+1 +— P (O — Ak+1)- (11)

Equation (11) assigns values to Ej; only for those
entries in Q2¢. This ensures the second constraint of Eq. (9)
to hold.

The iteration stops when it converges using the criteri-
on ||Ey — Epy1|lr <£||O| r, where £ is a small value (set
to 10~%). Finally, the method obtains the surface normal
estimates IV as

N=5,U"=5:V".

&) (12)
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3.3 Convex/Concave ambiguity

Like any other uncalibrated approach, our solution con-
tains ambi%uity. In our case, any matrix Q € R**3 that
satisfies @~ Q = I can be multiplied with the solution
of Eq. (8) without violating the equality [38]:

N'Q"QN = (QN)"(QN)=O0-E.

Therefore, QIN € R3*¥ is also a solution to the problem.
In a previous study, Belhumeur ef al. [7] show that if
rank(IN) = 3, the ambiguity due to a general invertible
3 x 3 matrix can be reduced to the generalized bas-relief
(GBR) ambiguity using the integrability constraint [39].
This is also true in our case since Q@ € R3*3. Therefore,
by enforcing integrability, we have a simpler ambiguity
described by a matrix Q. As a result, in our case, Q
should take a form of a GBR transformation, and at the
same time, satisfy QTQ = I. Therefore, it becomes

(13)

_ 1 1 0 p 1 1 0 0
Q:>X 01 v =3 0 1 0], A==£1. (149
0 0 A 0 0 X

GBR transformation

Satisfy QTQ:I

This is a binary ambiguity where A = +1 corresponds
to convex/concave surfaces that are not distinguishable
without light calibration. Therefore, by using the inte-
grability constraint, our method recovers surface nor-
mals up to only a binary convex/concave ambiguity. To
apply the integrability constraint, our method uses the
approach of [39].

4 NORMAL ESTIMATION BY USING REFER-
ENCE DATA

Section 3 recovers surface normals for general isotrop-
ic materials using only intensity profiles without any
reference data. In this section, we describe an extended
method by assuming that a database of BRDFs is addi-
tionally available.

A BRDF database includes dense measurements of real
material reflectances, and diverse appearances can be
synthesized using varying surface normals and lightings.
If such a synthetic data is dense enough, any test data
can be considered as its subset, and the problem can be
made more bounded and tractable by using the known
synthetic data as a reference. In this extended method,
we first generate the reference dataset using the BRDF
database, and then use the reference data for deriving
the estimates of surface normals and lighting directions.

4.1 Reference data

We produce a reference dataset containing intensity val-
ues that are sampled from a large variety of surface
normals, light directions, and materials. Let s, € R?
(k=1,...,9 and n] (¢ = 1,...,N) denote the sam-
pled light directions and surface normals, respectively,
and let m(= 1,..., M) be the index for materials in-
cluded in the reference dataset. Then I"(k,i,m) is the

Synthesized reference data

Captured test data

...... .
eference data array D'

Determlne
material m

2D test data matrix Dt

Intensity
matching

N\

Iteration

(

Row/column

erations
sL op

@

2D slice D, Reformed 2D slice RDmC

Fig. 6. Matching-based photometric stereo: determining
surface normals, light directions, and material of the test
scene by matching intensity values between test data and
reference data.

corresponding pixel intensity value for k-th light, i-
th surface normal, and m-th material. In other words,
the reference dataset {I"(k,i,m)} defines a mapping
(sp,n],BRDF(m)) — I"(k,i,m). In the rest of the paper,
we use superscripts r and ¢ for indicating reference and
test data, respectively.

We assume that all light sources have an identical
intensity; therefore, both light source s and surface
normal n] are represented as unit vectors. To densely
sample the reference dataset I”, we use 1249 frontal
vertices on a uniformly subdivided icosahedron to define
light directions s}, and surface normals n visible to the
camera. Pixel intensity values are then rendered for each
combination of light source s}, surface normal n], and
material m selected from the MERL BRDF dataset [6]
that contains 100 isotropic reflectances. In this manner,
we obtain the reference data {I"(k,i,m)} for all combi-
nations of sampled light directions, surface normals, and
100 different surface reflectances.

4.2 Formulation

We formulate the problem as intensity matching between
test data and reference dataset. For a test scene, we
obtain its test data by recording a sequence of images
from a fixed viewpoint with varying directional illumi-
nation. Let s} (I = 1,...,5%) denote the unknown light
vectors and n (j = 1,..., N*) be the unknown surface
normals for the recorded pixels. Their corresponding
pixel intensity values {I*(, j)} are stored as the test data,
which form a test matrix D' = [I*(1, )]st xnt-
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Let D" = [I"(k,i,m)]srxNrxmr denote the three
dimensional tensor containing all the intensity values
from the reference dataset. Then, our task is to match
intensity values between D" and D'. To reduce the
computational complexity, our method first obtains the
estimate of material /i using the skewness measure
described in Sec. 2.2. Then, its corresponding 2D matrix
D}, = [I"(k,i,m = m)]|srxn-, which is a slice of D", is
used for matching with D’ to solve for surface normals
and light directions. An overview of this approach is
illustrated in Fig. 6.

To match pixel intensities between D!, and D, let
us define two operators as two matrices R € RS %5
and C € RV *N'. When the reference matrix is left-
multiplied by R, its g-th row is selected and placed in the
p-th row of the resulting matrix. Similar to a permutation
matrix, this is achieved by setting 12, ; = 1 to be the only
non-zero element in the p-th row of R. Similarly, matrix
C applies column selection. When the reference matrix
is right-multiplied by C, its p-th column is selected and
placed in the g-th column of the resulting matrix. This
is performed by setting the element ), ;, = 1 to be the
only non-zero element in the ¢g-th column of C.

Using these operators R and C applied to the ref-
erence matrix D", we can use pixel intensities of the
selected rows (light directions) and columns (surface
normals) of the reference matrix D" to compare with
the test matrix D’. If m, R, and C are properly chosen,
the following objective function can be minimized:

{R,C,m} = argmin |RD’,C — aD'| r,
R,Cm,x

(15)

where o is a scalar value to account for exposure
differences. This matching procedure is illustrated in
Fig. 6 (right). In the optimal solution set {R, C, m}, mis
considered the index of the reference material that best
approximates the unknown test material m’. Besides,
positions of ‘1’s in R relate each unknown light source
directions sj to their closest reference light source direc-
tions in {s}}. Similarly, C maps each unknown surface
normals n to their closest reference surface normals in
{n}}. In this manner, the problem can be formulated
as finding the best matching between the test data and
reference data.

Due to the discontinuous nature of the operators R
and C, where only binary values {0,1} are contained,
directly finding the global optima via optimization is
computationally difficult. We solve this problem in the
subsequent sections in an iterative refinement frame-
work. Namely, our strategy is to first determine the ma-
terial /7, then infer light directions, and finally estimate
surface normals, and iterate these steps for reaching to
a better solution.

4.3 Material estimation

To solve the problem of Eq. (15), we first obtain the
initial solution by inferring the material. By assuming

a uniform surface reflectance in the test scene, or a
surface patch with a unique material after segmentation,
we infer the surface reflectance from the observed pixel
intensity values by computing the skewness measure
using Eq. (5). Let the skewness for the test material
and those of 100 reference materials be 7 and {7},
respectively. Then a best matching material 7 is found
as:

i = argmin [y — 37, |12 (16)

m

However, for highly specular materials, if the test surface
is lit by much fewer light directions than those in the
reference data, 7' computed for a single pixel may be
unstable due to the limited angular resolution of light-
ings. To avoid such a situation, we take multiple pixels
with similar surface normals (whose intensity profiles
have positive correlation coefficients), and use all of
them to compute ~*. We also retain a list (empirically 20)
matching candidates {71} with their ascending matching
costs, among which the final solution will be obtained
via optimization described later in this paper.

4.4

In this section, we describe a method for initializing light
directions, i.e., corresponding to the estimation of R, by
assuming a roughly uniform light direction distribution.
In estimating the light directions, our method takes a
two-step approach, i.e., it first determines the azimuth
angles, then estimates the elevation angles.

To determine the azimuth angles of the light directions
in the test data, we use the angular difference calculation
described in Sec. 2.1. We begin with approximately de-
termining two special elements in the test data: the light
direction s’ and surface normal n’,, which are parallel
to the viewing direction. To identify s’}/, we take a simple
strategy by selecting the lighting s’ that illuminates the
greatest number of surface points. Specifically, we exam-
ine every image captured under a different light s/, and
select the one that contains the largest number of pixels
whose intensity values are greater than a threshold; the
threshold for detecting shadows is determined based on
the first quartile of all measured intensities, following
[36]. The frontal surface normal n’, is then determined by
selecting the surface normal that produces the brightest
pixel intensity under the frontal lighting direction 57;/.

At the same time, we find one set of surface normals
{n’} with similar elevation angles as illustrated in Fig. 7
after grouping similar intensity values under the frontal
light source s’/}. From this set, our method estimates the
azimuth angles of {n!} using their intensity profiles {I' };
specifically, the linear relationship between the angular
difference of surface normals and geodesic distance of
their intensity profiles described in Sec. 2.1. For obtaining
angular differences among {n’}, we apply Multi Dimen-
sional Scaling (MDS) [40], which is a common technique
for distance-preserving dimensionality reduction using
the geodesic distances among {I'} as input. The output

Initialization of light directions
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Fig. 8. The estimated azimuth angles of {n.} for two
materials are shown in two rows. The spots’ positions in
the plots are the dimensionality reduction results of {I%}.
They correctly convey the relative azimuth angles of {n’}
and the color shows the ground truth azimuth angles.
Note the 2D rotation and flip ambiguity.

are a set of 2D coordinates that preserve the distances
among {I'}. The geodesic distances among these 2D
coordinates are linearly related to the angular difference
of {n'}; in other words, they show a similar structure
with that of {n} in the 2D space up to a 2D rotation and
flip ambiguity as shown in the example in Fig. 8. Since
{n’} have similar elevation angles, the 2D coordinates
represent the distribution of their azimuth angles.

For each light source s], we examine its correspond-
ing pixel intensity values at surface normals {n’}. The
brightest intensity observation should correspond to one
of {n.} that has the closest azimuth angle to s! assuming
that the reflectance is isotropic. Based on this, we assign
an azimuth angle obtained from {n’} to each light source
{s}}. Note that, at this point, the 2D rotation and flip
ambiguity in {n’} is still embedded in s.

Once the azimuth angles of {s!} are determined, their
elevation angles are ordered in accordance with the
brightness of the intensity observations at the frontal
surface normal nﬁ/, based on the fact that when the light
direction’s elevation angle gets closer to the frontal sur-
face normal n;/, it yields a brighter intensity observation.
In the meantime, we remove light sources from {s]
which cannot illuminate n’}/ to only keep frontal lights,

while notation {s!} does not change for convenience. By
assuming a uniform distribution of {s!} in the frontal
hemisphere, we order uniform reference lights {s.} in
accordance with their elevation angles, sub-sample their
elevation angles to a total number equal to the number
of {s}} and assign them to {s!}.

In this procedure, we have assumed a uniform light
source distribution for the purpose of initialization.
However, iteration in the next section removes this as-
sumption and handles non-uniform lights for deriving
the final solution. The 2D rotation and flip ambiguity in
this section will also be addressed later.

4.5 Surface normal estimation

Previous sections estimate a list of candidate materials
7 and light selection matrix R. What remains unknown
in Eq. (15) is C that encodes the surface normals of the
test scene.

Let A = RD:;L, then Eq. (15) can be rewritten as

C = argmin || AC — aD!||p, 17)
C,a

where C contains a single ‘1" in each column while
all the other elements are zero. Because of this dis-
continuous and non-differentiable constraint, Eq. (17) is
not computationally tractable by efficient convex/non-
convex optimization methods. Instead of directly op-
timizing Eq. (17), we use a nearest-neighbor search
in the normalized column vector domain. Namely, we
sequentially select a column of D' and find the most
similar column in A. The similarity is measured using
the normalized column vectors to eliminate the effect of
a, and then computing the cosine of their inner product.
For instance, for the ¢-th column vector of D?, if its most
similar column in A is found to be the p-th one, C,, ; =1
is set to be the only non-zero element in C’s ¢-th column.

By sequentially determining each column of C, cor-
respondences between test surface normals {n’} and
reference normals {n]} are obtained to give us an initial
estimate of the test surface geometry. At this point, a 2D
rotation and flip ambiguity of light directions (Sec. 4.4)
are still embedded in the recovered surface normal {n’}.

4.6

To further refine the estimates of light and surface nor-
mal selection matrices R and C, we take an alternating
update procedure. For updating R, we fix the previous
estimate of C and compute & using Eq. (17). Then R is
updated by

Iterative refinement

R + argmin |RD",C — aD'| r, (18)
R

which is solved in a similar manner as Eq. (17). We

then fix R and update C using Eq. (17) as described

in Sec. 4.5. This procedure continues iteratively until the

cost decrement of Eq. (17) becomes smaller than 0.1%.
We also define an outer loop aiming at finding the best

matching material. As described in Sec. 4.3, we have a
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Algorithm 1 Reference-based method algorithm

Find candidate materials {rn} via Eq. (16).
// Outer loop: test each candidate material
for Select a new candidate material /2 do
Initial estimation of light directions R (Sec. 4.4)
Initial estimation of surface normals € (Sec. 4.5)
// Inner loop: update light directions and surface normals
while Not converge do
Update R by using Eq. (18)
Update C by using Eq. (17)
Update the minimum cost value.
end while
Update the solution with minimum cost value
end for
Return the final solution {7, R, C'}

list of candidate materials obtained by evaluating the
skewness. For each of them, we estimate the light and
surface normal selection matrices R and C using the
procedure described above. Among those material-wise
estimates, the minimizer {R, C, 7} of the cost of Eq. (15)
is taken as the final solution. The entire procedure is
summarized in Algorithm 1.

4.7 Convex/Concave ambiguity

As discussed in the end of Sec. 4.5, the solution is not yet
correctly determined since it contains ambiguity in the
surface normal estimates. Namely, the derived surface
normals can rotate and flip about the viewing direction
together with light sources by still satisfying Eq. (15).

Similar to Sec. 3.3, the integrability constraint can be
used to reduce this ambiguity to a binary one. The 2D
rotation and flipping ambiguity B for a surface normal
n is written as

+cos¢p —sing O
Bn= |tsin¢g cos¢ 0|n, (19)
0 0 1

where ¢ is the 2D rotation angle around the viewing
direction. Using the integrability constraint, the general
invertible 3 x 3 ambiguity can be reduced to a GBR am-
biguity. Therefore, in our case, the GBR transformation
that satisfies our particular ambiguity B becomes

R x 0 0
B= |0 k 0|, k==l

0 0 1

(20)

which correspond to two surfaces whose surface normals
differ by a = rotation. Therefore, the ambiguity corre-
sponds to a binary convex/concave ambiguity. Applying
integrability constraint in our case is simple, mainly be-
cause the original ambiguity in Eq. (19) only contains an
angle ¢ and sign ‘+” as unknowns. Compared to general
invertible 3 x 3 matrices solved by conventional methods,
our problem is much easier to solve numerically.

Fig. 9. Synthetic surfaces used in the experiments: hemi-
sphere, Bunny, Dragon, Rabbit, Beethoven, Lion, and
Happy Buddha.

TABLE 1
Average normal / light errors of 100 materials. With
reference data, only frontal lights are used (89 and 25).

Mat- 162 (89*) lights 42 (25*) lights

erials | No ref. | With ref.* | No ref. | With ref.*
All 100 | 9.65°/—|4.36°/5.45° | 9.30° /- | 4.88°/5.84°
Best 67 | 6.77°/—|2.58°/2.98° | 7.02° /- 3.13°/3.64°
Best 33 | 3.65°/—{1.94°/2.03° | 4.72° /- 2.18°/2.32°

Since our iterative update scheme does not explicitly
enforce the ambiguity to be a rotation and flipping
ambiguity, for a Lambertian surface, the ambiguity may
become the GBR ambiguity during the iterative update.
This is due to the fact that Eq. (15) has minimizers up to
the GBR ambiguity in the Lambertian case. For general
non-Lambertian reflectances, the ambiguity will not be
generalized as such because of the information provided
by specular components. This is consistent with previous
studies that resolve the GBR ambiguity using specular
observations [23], [24], [34].

5 EXPERIMENTAL RESULTS

In this section, we evaluate our methods, one without
reference data (Sec. 3) and the other without reference
data (Sec. 4), using synthetic and real-world data for both
quantitative and qualitative assessments.

5.1

We quantitatively assess the proposed methods using
synthetic scenes. We use several 3D models include
a hemisphere, Bunny, Dragon, and Happy Buddha
from Stanford 3D model dataset [41], and also Rabbit,
Beethoven and Lion as shown in Fig. 9. These 3D models
are rendered using BRDFs of the MERL BRDF database
under varying lighting directions. The rendering settings
are detailed in the each test described below.
Estimation accuracy We first assess the estimation
accuracy of surface normal and light directions using
a hemisphere that contains all visible surface normals.
We render images using 100 different materials of the
MERL BRDF database illuminated under multiple light

Synthetic scenes
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Fig. 10. Average surface normal error w.r.t.normal range.
Spherical plots show the average error maps.

directions uniformly distributed over a sphere. In partic-
ular, we first test 162 uniform light directions, and then
42. For the method with reference data (Sec. 4), we only
use the frontal light directions that span in the upper
hemisphere, resulting in 89 and 25 light directions.

Table 1 shows the average accuracy for 100 materials.

Without reference data, our method in Sec. 3 achieves
average errors smaller than 10° for all 100 materials,
while for the best 33 materials the average accuracy is
around 4°. On the other hand, if using reference data,
our method in Sec. 4 has better accuracies than 5°,
while the number for the best 33 materials is around 2°.
In addition, it also allows for light sources estimation,
whose accuracy is similar to those for surface normals.

We study the distribution of surface normal errors.

Fig. 10 shows the relationship between normal angle
range and average error. Without reference data, our
method in Sec. 3 accurately recovers surface normals
when they are more close to the viewing direction;
while errors become bigger for those normals in the
boundary. On the other hand, our method in Sec. 4
using reference data performs more stably for variant
surface normals. Note that when using reference data,
the discrete sampling of s} and n] in Sec. 4.1 is one
source of the error. In particular, the average sampling
interval is about 4.1° in our setting, and thus it will cause
a 1.6° average error for arbitrary surface normal or light
source. This error exists in the final results inevitably.

Comparison with previous methods In this section,

we further compare our results with those of previous
methods. The same dataset as above, i.e., hemispherical
surfaces rendered with 100 materials and both 162 and
42 light directions, are used by all methods. Strictly
speaking, it is not easy to find prior methods that can
completely handle unknown reflectances and uncalibrat-
ed illuminations without additional assumptions to ours.
In our experiments, we choose the following ones that
at least separate the reflectance and illumination factors
without requiring known light directions:

1) Hayakawa [38]: a baseline method that assumes
Lambertian reflectance and no shadows.

2) Wu et al. [10]: a state-of-the-art method that robust-
ly handles non-Lambertian components and also
cast shadows.

During experiments, we find these methods difficult to
solve the GBR ambiguity for very specular materials.
Therefore we provide them with the ground truth light

TABLE 2
Comparison of average angular errors of surface normal
estimates for 100 materials and 162/42 light directions.

Lichts Ours Ours* Wu et al. Hayakawa
8 (no ref.) (with ref.) [10] [38]

162 (89%)| 9.60° 4.36° 1852°  22.09°
42 (25%) 9.30° 4.88° 20.05° 26.95°

70

60 ==Qurs (no ref.) I [

==Qurs (with ref.)
50 H
40 —Wu et al. 2010

—Hayakawa 1980
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Fig. 11. Comparison of average normal errors for 100
materials with 42 lights. Large errors are truncated at 70°.

sources. In this sense, they actually work in a calibrated
mode and thus give their theoretically best results.

Average estimation errors of all methods are shown
and compared in Table 2. Our method achieves signif-
icantly better estimation accuracy than others for both
162 and 42 light sources. Note that errors for methods
[42] and [10] are around 20° in average, but it does not
mean these methods cannot handle all materials. In fact,
as per-material results shown in Fig. 11 for 42 lights, our
method clearly achieves good accuracies for all materials
while the other two methods only fail for those difficult
ones. This shows the significant merit of our method to
handle general and unknown reflectances.

Another significant merit of our method is that, if ref-
erence data is available, we can also recover light source
directions with high precision. This cannot be done by
conventional methods without accurately knowing both
reflectance and shape.

Inexact reference material We test the method with
a reference database where the exact reference material
does not exist. We perform the experiments for 100 ma-
terials by forcing the method not to choose the exact ref-
erence material. The resulting accuracy does not reduce
significantly, as shown in Table 3. It shows that most
common reflectances can be approximated by similar
ones in the database when only considering their gray-
scale values. In addition, we also try interpolating the
unknown material by using three best matched inexact
materials during optimization, where the weights are
set inversely proportional to their individual matching
costs. The accuracy in Table 3 shows an even more stable
result with the interpolation method than when given
the exact reference material, since the non-interpolation
method may not always select that best material.

Convergence The problem in Algorithm 1 is clearly
non-convex, and we test its convergence experimentally.
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Fig. 12. Average surface normal estimation results for
100 materials under non-uniform distributions of light di-
rections. Values represent the average angular errors.

TABLE 3
Results with/without exact reference material.

Lights | Exact mat. | Inexact mat. | Interpolated mat.
89 4.36° 4.65° 4.25°
25 4.88° 5.31° 4.86°

We select eight materials which represent four typical re-
flectance types: exceptional, specular, glossy and diffuse.
We test the convergence with different initial states by
adding Gaussian noise to the ground truth light direc-
tions to cause average biases from 0° to 50°. Results in
Fig. 13 show that: 1) convergence becomes bad for glossy
materials with sharp specular lobes when the initial light
bias > 20°; 2) some exceptional materials have globally
large errors since they are not ideally isotropic; 3) other
types of materials show good convergence even with
large initialization biases. For reference, the average bias
of our light direction initialization is below 10°.
Non-uniform distribution of light directions To as-

N

-
T

10 20 30 40
Average initial light directions bias [deg.]

Fig. 13. Results by distorting the initial light directions.
Each material on the left corresponds to an error curve.

TABLE 4
Normal error increments due to non-uniformity of lights.

Uniform | Frontal 5° shift 13° shift Skewing

No ref. 9.30° +1.67° +0.67° +1.74° +6.17°
W. ref. 4.88° +0° +0.51°  +1.48° +3.70°

—40

c)35 —Frontal, 25 lights

§30 —Avg. 5°shift, 24 lights

‘é 2 Avg. 13°shift, 24 lights

) 2 —Global skewing, 21 lights

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Materials (sorted by the results of uniform lights)

Fig. 14. Per-material surface normal estimation errors
under different non-uniform light sources.

sess the effects of non-uniform distributions of light
directions, we test our method with four representative
non-uniform light patterns. These light source directions
are generated by 1) only keeping the frontal ones of
the original uniform lights; 2) randomly shifting the
uniform lights with an average bias of 5°; 3) randomly
shifting the uniform lights with an average bias of 13°;
and 4) globally skewing the uniform lights. These light
patterns and the estimation results are summarized in
Fig. 12. Note that with reference data, our method in
Sec. 4 by default only uses frontal lights.

Intuitively, both surface normal map and light source
pattern can be correctly obtained. Randomly shifted light
sources do not affect the accuracy too much, while global
skewing causes relatively larger errors. This intuition
can be supported by the error increments given in
Table 4, where the errors increase by 10% ~ 20% due
to random shifts, and the number is around 70% in
the cases of global skewing. These results indicate that
uniform light sources are preferred by our method, and
non-uniformity due to slight random shifts is also well
acceptable. Good accuracy is achievable by just assigning
light sources to be roughly uniform in practice.

Per-material results are further given in Fig. 14 for easy
comparison. The results obtained by using reference data
are shown. The uniform-light case achieves best accura-
cies, while other light sources produce bigger errors but
maintain the same error-material correspondences.

Results for synthetic 3D surfaces We conduct experi-
ments using synthetic 3D surfaces shown in Fig. 9. They
are rendered with six typical non-Lambertian materials
under 42 light sources with 5° random shifts. Their
normal maps are recovered by using our methods both
with/without reference data. Representative results are
given in Fig. 15. The recovered normal maps by two
methods look highly similar, although error maps show
that using reference data improves accuracy especially
for boundary areas. Surface normal errors and light
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Fig. 15. Results for synthetic surfaces with isotropic reflectances. Top row shows one of the images for each scene.
Second and third rows respectively show the recovered surface normal and its error map of our method without
reference data (Sec. 3). Fourth and fifth rows show those of our method with reference data (Sec. 4).

TABLE 5
Results for 3D models with six non-Lambertian materials.
3D Model No ref. | With ref. With ref.
normal err.|normal err. lights err.
Bunny 8.91° 4.41° 6.00°
Dragon 8.06° 3.72° 5.12°
Rabbit 8.30° 4.39° 5.84°
Beethoven 6.65° 4.46° 5.96°
Lion 7.12° 3.72° 5.33°
Happy Buddha| 6.23° 4.22° 5.44°
Average 7.55° 4.15° 5.62°

source errors are further provided in Table 5. The av-
erage normal errors are 7.55° and 4.15° for all six non-
Lambertian reflectances with uncalibrated light sources.

5.2 Real-world scenes

We conduct experiments for real world scenes. Images
for real-world objects are captured by rotating the light
source around the objects. Some objects with large con-
cavity suffer from severe cast shadows produced by
sidelights and back-lights. To avoid this, we use lights
mainly from the frontal hemisphere for these objects. In
most cases around 50 light sources are finally used.

Experimental results are summarized in Fig. 16 where
estimated surface normal maps are presented in color.
Results in the second row are obtained without using
reference data, and results in the last row are obtained by
using reference data. Both methods give nearly identical
outputs. Note that different colors on the same object are
well handled, because our methods use gray-scale pixel
intensities that are normalized. Besides, in all results,
there exists a convex/concave ambiguity as discussed.
The convex/concave surfaces are theoretically undistin-
guishable by our method. However, if use additional
information such as simple user interaction or boundary
assumption, it is feasible to resolve the ambiguity be-
cause our ambiguity is only a binary one. For example,
the rightmost object “red-leaf” in Fig. 16 has a concave
shape that is correctly and automatically recovered by
using the outward-looking boundary normals.

We make quantitative evaluations for these results.
First, the average angular error of “metallic hemisphere”
(the leftmost case in Fig. 16), which has a known shape,
is 3.45° in the second row, and is 9.99° in the third
row. The latter one has a larger error partially because
intensity matching is more sensitive to intensity loss in
saturated areas, as we did not purposely use a high
bit-depth camera. As for other objects, we do not have
ground truth of their surface normals. However, we can
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Fig. 17. Real scenes without occluding boundaries.

assess their light source estimation accuracy since we
know their ground truth. Because the average error of
light sources are similar to (usually larger than) that of
surface normals as shown in Table 1 and Table 5, they can
be used to estimate the surface normal accuracy. These
estimated errors are shown in the bottom of Fig. 16.
We also test a few scenes that have no occluding
boundaries, as shown in Fig. 17. As the results show,
our methods, no matter with or without reference data,
can estimate surface normals purely from the images of
the surface patches. This shows the advantage of the
proposed methods over the prior methods [3], [36].

6 DISCUSSION AND CONCLUSION

In this paper, we propose photometric stereos methods
that handle both uncalibrated light sources and general
unknown reflectances. Our approach uses intensity pro-
files, and it is built upon our findings on the relations be-
tween the geodesic distance of intensity profiles and the
angular distance of surface normals, and also between
the intensity distribution of intensity profiles and surface
reflectance property. We investigate these relations and
develop methods that recover surface normals under
two conditions: purely from intensity profiles and by us-
ing reference data. Experimental results show impressive
results in surface normal estimation with unknown light
sources and general reflectances.

The assumptions about uniform lights and reflectance
are somehow restrictive. Although we have shown that
they can be relaxed to some degree without significantly
affecting the results, further investigation on how to
remove them can be a good future research direction.
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