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Discrete Search Photometric Stereo
for Fast and Accurate Shape Estimation

Kenji Enomoto, Michael Waechter, Fumio Okura, Kiriakos N. Kutulakos, and Yasuyuki Matsushita

Abstract—We consider the problem of estimating surface normals of a scene with spatially varying, general bidirectional reflectance
distribution functions (BRDFs) observed by a static camera under varying distant illuminations. Unlike previous approaches that rely on
continuous optimization of surface normals, we cast the problem as a discrete search problem over a set of finely discretized surface
normals. In this setting, we show that the expensive processes can be precomputed in a scene-independent manner, resulting in
accelerated inference. We discuss two variants of our Discrete Search Photometric Stereo (DSPS), one working with continuous linear
combinations of BRDF bases and the other working with discrete BRDFs sampled from a BRDF space. Experiments show that DSPS
has comparable accuracy to state-of-the-art exemplar-based photometric stereo methods while achieving 10–100x acceleration.

Index Terms—Photometric stereo, spatially varying BRDFs, discrete search, nearest-neighbor search
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1 INTRODUCTION

PHOTOMETRIC stereo recovers fine surface details in the
form of surface normals from images taken by a static

camera under varying lightings. Traditional photometric
stereo methods [1] assume Lambertian reflectance, which
deviates from real-world reflectances, thus introducing er-
rors in surface normal estimates. Many modern methods
use more sophisticated reflectance models [2], [3], [4], [5]
for more accurate surface normal recovery; however, they
generally encounter the issue of non-convex optimization in
determining the surface normals. The problem is rooted in
the fact that these methods frame the estimation problem as
continuous optimization.

This paper presents Discrete Search Photometric
Stereo (DSPS), which casts photometric stereo as discrete
search over a set of finely discretized surface normals. Since
a surface normal has only two degrees of freedom (i.e., a
unit vector represented by the azimuth and elevation angles
over a hemisphere), discretization yields a relatively small
number of surface normal candidates; e.g., discretizing in
one-degree intervals yields 360 ⇥ 90 = 32, 400 candidates.
DSPS searches over the space of finely discretized surface
normals while avoiding problems with local minima.

To reduce the computational cost of our discrete search,
we show that expensive computations can be packed into
a scene-independent precomputation step which accelerates our
discrete search without sacrificing accuracy. As Fig. 1 illus-
trates, the precomputed database can be reused for arbitrary
scenes that can be well described by a set of BRDF bases.

In this paper, we discuss two variants of our DSPS
algorithm suited for two different classes of BRDF models:

1) DSPS-C for continuous BRDF models represented as
the linear combination of multiple BRDF bases. This
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representation is often used in photometric stereo meth-
ods for general BRDFs [2], [6], [7]. In DSPS-C, offline
precomputation on discretized surface normals greatly
speeds up the inference phase.

2) DSPS-D for discrete BRDFs. We turn the inference prob-
lem into a nearest-neighbor search problem, for which
we benefit from existing fast nearest-neighbor search
algorithms.

Our methods are motivated by the success of example-
based [6] and virtual exemplar-based [7] photometric stereo.
Unlike example-based methods, DSPS does not require
placing a reference object in the scene. Also, unlike vir-
tual exemplar-based methods that perform “coarse-to-fine
search” without the guarantee of finding the globally opti-
mal surface normal, we treat the problem as a discrete search
problem, which enables us to use exhaustive search to find
the globally optimal surface normal within the discretized
space.

Contribution: We propose a precomputation strategy for
photometric stereo with continuous and discrete BRDF
models, via the discretization of surface normals. It accel-
erates the surface normal estimation and enables exhaustive
search to find globally optimal surface normals in a reason-
able amount of time, which greatly contribute photometric
stereo applications such as fast defect inspection [8]. We
assess the efficiency and accuracy of our method using syn-
thetic and real-world data and show 10–100x acceleration
over state-of-the-art methods while maintaining accuracy.

In an earlier version of this work [9], we discussed the
continuous BRDF model (variant 1 above). In this paper, we
extend our previous work to achieve more efficient surface
normal estimation by treating reference BRDFs in a dis-
crete manner. This simple extension connects photometric
stereo to nearest-neighbor search, which results in one to
four orders of magnitude faster inference while maintaining
accuracy.
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Fig. 1: An overview of our algorithm, Discrete Search Pho-
tometric Stereo (DSPS). It precomputes a database from
discretized surface normals and reference BRDFs in a scene-
independent manner. During inference from input images,
surface normals of any scene are efficiently recovered by
searching the precomputed database.

2 RELATED WORK

This section describes previous non-Lambertian photo-
metric stereo and their relation to our methods. Modern
non-Lambertian photometric stereo can be roughly cate-
gorized into model-based, exemplar-based, and learning-
based methods.

2.1 Model-based photometric stereo

Model-based methods use parametric expressions for
BRDFs. The model parameters, including the surface nor-
mal, are typically estimated via optimization. The key
for these methods is the choice of a parametric BRDF
model. Woodham’s original work [1] assumed Lamber-
tian reflectance, which allows using convex least-squares
optimization to determine surface normals and albedos.
Parametric modeling of non-Lambertian BRDFs is actively
studied, particularly in the graphics community. For ex-
ample, the Blinn-Phong model [10], the Torrance-Sparrow
model [11], the Ward model [12], the specular spike
model [13], [14], and a microfacet BRDF with ellipsoidal
normal distributions [5] have been developed. While these
models lead to non-convex optimization for photometric
stereo, some recent methods use bivariate functions to
avoid the non-convexity. For representing low-frequency
reflectances, Shi et al. [3] use a bi-polynomial function and

Ikehata and Aizawa [4] use a sum of lobes with unknown
center directions. Although model-based methods can be
used on a wide range of materials, they always involve a
trade-off between representative power and optimization
complexity.

2.2 Exemplar-based photometric stereo

Early work on exemplar-based (also called example-based)
photometric stereo relies on the concept of orientation con-
sistency [6], i.e., two surfaces with the same surface normal
and BRDF will have the same appearance under the same
illumination. Another work along this direction is found
in Horn and Ikeuchi [15]. In these approaches, a reference
object with known surface normals is placed in a target
scene and the reference object’s BRDF is assumed to be the
same as the target object’s. A surface normal is recovered
for each point of the target object by searching the corre-
sponding pixel intensity of the reference object that best
matches the target’s appearance. To relax the assumption
of identical BRDF between reference and target, Hertzmann
and Seitz [6] introduced two reference objects, diffuse and
specular spheres, placed in the target scene. They approxi-
mate the target BRDF by a non-negative linear combination
of the reference BRDFs.

Hui and Sankaranarayanan [7] introduced virtual
exemplar-based photometric stereo that performs exemplar-
based photometric stereo without actually introducing ref-
erence objects in the target scene. They render virtual ex-
emplars of appearances under the target scene illumination
with MERL BRDFs [16] and assume that the target BRDF
lies in the non-negative span of the MERL BRDFs. In their
method, there are time-consuming processes such as render-
ing virtual exemplars, an iterative optimization for solving a
non-negative least-squares problem, and searching over all
possible surface normals. To reduce the computation cost,
they proposed an efficient search algorithm which, however,
eliminates the guarantee of finding the optimal solution.

Our DSPS is categorized as an exemplar-based method
that does not require reference objects. Unlike virtual
exemplar-based methods, our DSPS allows the exhaustive
discrete search that guarantees to reach the globally optimal
solution within the bounds of the objective function. Our
discrete search strategy in DSPS is accelerated through
scene-independent precomputation. Moreover, our DSPS-D
treats BRDFs as well as surface normals in a discrete space,
which makes the surface normal estimation problem similar
to classic nearest-neighbor search. This allows using any
fast nearest-neighbor search method for efficiency without
sacrificing accuracy. The differences among exemplar-based
photometric stereo methods, including our methods, are
summarized in Table 1.

2.3 Learning-based photometric stereo

Recently, deep learning-based photometric stereo methods
have been proposed. They learn a mapping from measured
intensities under known illuminations to surface normals
using a neural network. These methods show strong results
on various scenes due to the network being trained with
diverse shapes and materials. In particular, learning-based
methods effectively deal with global illumination effects,
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TABLE 1: Comparison of exemplar-based photometric stereo methods and their properties.

Hertzmann & Seitz [6] Hui & Sankaranarayanan [7] our DSPS-C our DSPS-D

surface normal
representation discrete (example-based) discrete to continuous discrete

BRDF
representation

continuous (non-negative linear
combinations)

continuous (non-negative
linear combinations)

continuous (linear
combination) discrete

solution
method iterative non-negative least squares iterative non-negative least

squares closed-form least squares nearest-neighbor
search

setting

Virtual world Real world

Target

Real world

Target
Diffuse & specular

examples Appearance exemplars

Virtual world Real world

Target

Real world

Target
Diffuse & specular

examples Virtual exemplars

such as cast shadows and inter-reflections, which are dif-
ficult for model-based and exemplar-based methods, by
including such effects in the training data. Santo et al. [17]
and Chen et al. [18] created a training dataset by ren-
dering the Blobby [19] and Sculpture [20] shape datasets
with 100 MERL BRDFs [16]. Ikehata [21] also introduced
a training dataset, called CyclesPS dataset, containing sev-
eral objects rendered with a diverse set of materials from
Disney’s principled BSDFs [22] with global illumination
effects. Logothetis et al. [23] proposed a per-pixel data gen-
eration strategy considering global illumination effects to
simplify and speed up the rendering. Typical learning-based
methods suffer from sparse light configurations, which is
subsequently addressed by some recent papers [24], [25],
[26]. Wang et al. [27] also addressed surface normal recov-
ery under sparse lightings using monotonicity of isotropic
reflectance and a special lighting setup with a collocated
light. Beside learning-based methods in supervised settings,
Taniai and Maehara [28] proposed an unsupervised method
that minimizes the reconstruction loss between input and
re-rendered images.

Our DSPS-D, which uses nearest-neighbor search, can
be considered to be a learning-based approach as it is a
“lazy learner” that memorizes the entire training dataset.
An advantage of nearest-neighbor search is the simplicity of
the training compared to deep learning approaches. Much
like the growth in datasets in various machine learning tasks
such as image classification [29], [30], it is expected that
datasets for photometric stereo will also grow. Therefore,
we consider that it may raise issues in stable learning for
neural networks, such as the issue of training on a biased
dataset [31], [32]. In contrast, nearest-neighbor search is less
affected by biases in training datasets since it only requires
that training datasets contain data similar to an input query.

3 IMAGE FORMATION AND PROBLEM STATEMENT

Suppose a surface point with a unit surface normal
n 2 S2 ⇢ R3 is illuminated by an incoming directional light
l 2 S2, without ambient lighting or global illumination ef-
fects such as cast shadows or inter-reflections. When this

surface point is observed by a camera with linear response,
the measured intensity m 2 R+ can be written as

m / ⇢(n, l) max(n>l, 0), (1)

where ⇢(n, l) : S2 ⇥ S2 ! R+ is a general isotropic BRDF.
In calibrated photometric stereo, a static camera records

multiple, say L0, measurements {m1, . . .mL0} for each sur-
face point under various light directions {l1, . . . lL0}. Then,
Eq. (1) can be written in matrix form as
0

B@
m1

...
mL0

1

CA

| {z }
m

/

0

B@
max(n>l1, 0) 0

. . .
0 max(n>lL0 , 0)

1

CA

| {z }
E

0

B@
⇢(n, l1)

...
⇢(n, lL0)

1

CA

| {z }
⇢

,

where m is a measurement vector, E is a diagonal irradiance
matrix, and ⇢ is a reflectance vector.

We model the reflectance ⇢ by a linear combination
of BRDF basis vectors in a similar manner to Hertz-
mann et al. [6], and Hui and Sankaranarayanan [7]. By
stacking M known BRDF basis vectors in a BRDF basis
matrix B, ⇢ can be written as

⇢ =

0

B@
⇢1(n, l1) . . . ⇢M (n, l1)

...
. . .

...
⇢1(n, lL0) . . . ⇢M (n, lL0)

1

CA

| {z }
B

c,

where c = [c1, . . . , cM ]> is a BRDF coefficient vector. With
this, the image formation model can be simplified to

m = EBc def= Dc (2)

where D(= EB) 2 RL0⇥M
+ .

Problem statement: Our goal is to find the optimal surface
normal n for each surface point, given measurements m and
associated light directions {l1, . . . , lL0} based on Eq. (2).

4 PROPOSED METHOD

This section presents our DSPS algorithm with continuous
and discrete BRDF models.
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Fig. 2: Starting from the appearance tensor T that represents
appearances for a comprehensive set of light directions,
surface normals, and BRDFs, we slice out a sampled ap-
pearance matrix Di for a set of known light directions and a
hypothesized surface normal ni. The column space of Di is
the space of appearances over all possible materials for the
hypothesized normal under the known light directions.

4.1 Discrete Search Photometric Stereo with a contin-
uous BRDF model

Our Discrete Search Photometric Stereo with a continuous
BRDF model (DSPS-C) casts the photometric stereo problem
as discrete search, where the space of surface normals is
discretized. We hypothesize a surface normal n and test
whether it (approximately) satisfies the image formation
model of Eq. (2). By conducting this hypothesis-and-test
for all possible surface normals, DSPS-C is able to find the
globally optimal surface normal n that best satisfies Eq. (2).

Hypothesis-and-test strategy: Let N = {ni | i = 1, . . . , N}
be the discretized space of surface normals, which we call
the set of surface normal candidates. We prepare a ten-
sor representation for diverse appearances whose axes are
(1) surface normals, (2) light directions, and (3) BRDFs.
Suppose the spaces of surface normals and light directions
are discretized into N and L bins, respectively, and there
are M distinct BRDFs. Then, the appearance tensor T can
be defined as T 2 RN⇥L⇥M

+ (see the left of Fig. 2).
For simplicity, let us assume that the appearance tensor

contains the actual light directions of the observed scene. If
we hypothesize a certain surface normal ni 2 N for a scene
point, using L0  L known light directions, we can slice a
sampled appearance matrix Di 2 RL0⇥M

+ from the appearance
tensor T along the hypothesized surface normal ni and a set
of L0 known light directions as illustrated in Fig. 2. Using Di

instead of D, Eq. (2) becomes

m ' Dic.

For the overdetermined case L0 > M , the least-squares so-
lution for the BRDF coefficients c that best explains the
measurements is

ci =
⇣
D>

i Di

⌘�1
D>

i m = D†
im,

where D†
i is the pseudo-inverse of Di. The estimated BRDF

coefficients ci are least-squares optimal for the hypothesized
normal ni and the space of sampled appearances Di. We can

!

"
! !

" "!

ran($!)
ran($")

&!&"

Ω ⊂ ℝ#!

Fig. 3: Geometric interpretation of the measurement recon-
struction error. The reconstruction error of measurements
kZimk22 can be seen as distance between the measurement
vector m and the subspace spanned by Di in the L0-
dimensional space ⌦.

test the validity of the hypothesized ni by evaluating the `2
measurement reconstruction error as

ei = km � Dicik22 . (3)

Therefore, the optimal surface normal n⇤ can be found as
the minimizer of the following objective

n⇤ = ni⇤ , i⇤ = argmin
i2{1,...,N}

ei. (4)

A naı̈ve implementation may require a significant computa-
tional effort for solving this problem. We thus introduce an
efficient scene-independent precomputation strategy.

Scene-independent precomputation: The reconstruction er-
ror ei in Eq. (3) can be further simplified as

ei = km � Dicik22 =
���m � DiD

†
im

���
2

2

=
���
⇣
I � DiD

†
i

⌘
m

���
2

2

def= kZimk22 .

As long as the lighting and BRDF bases are fixed,
Zi(= I � DiD

†
i ) 2 RL0⇥L0

is uniquely determined given a
normal hypothesis ni. We, thus, can precompute a set of
{Zi} for all normal candidates in N . At inference time, we
simply need to assess the magnitude of Zim for all i.

This precomputation happens only once and the result
can be used for any new scene with the same lighting.

Dimensionality reduction of sampled appearance matrix:

Eq. (4) is only a necessary condition for correct surface nor-
mal solution. When the sampled appearance matrix Di has
fewer rows than columns or when m 2 ran(Di) 2 RL0⇥M

(Di’s range) for all Di, there exist greater than or equal to
one BRDF coefficient vectors ci that make all reconstruction
errors {ei} zero.

As illustrated in Fig. 3, a measurement vector m ex-
ists in an L0-dimensional space ⌦. The column vectors of
Di span a rank(Di)-dimensional subspace in ⌦, and the
measurement reconstructions Dici = DiD

†
im reside in this

subspace. Thus, the reconstruction error kZimk22 can be
seen as the distance between the measurement vector m
and the subspace spanned by Di. From this perspective, if
rank(Di) = L0, the columns of Di span the entire ⌦ and the
reconstruction error becomes always zero regardless of the
correctness of the surface normal hypothesis ni.
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To avoid this, we replace Di with its first M 0(< L0) left
singular vectors U0

i 2 RL0⇥M 0
obtained through SVD. With

this, Zi can be precomputed in a simpler form as

Zi = I � U0
iU

0†
i = I � U0

iU
0>
i

due to the orthogonality of each singular vector.
The effective value of M 0 is surprisingly small, around

three even for L0 ⇠ 100 (see the supplementary material
for details). It indicates that the best surface normal can be
estimated even if Eq. (2) is not strictly satisfied. While the
dimensionality reduction reduces the span of the original
BRDF bases, more BRDF bases are preferable to find a better
subspace of Di.

4.2 Discrete Search Photometric Stereo with a discrete
BRDF model
We further present Discrete Search Photometric Stereo with
a discrete BRDF model (DSPS-D), that treats both surface
normals and BRDFs in a discrete manner. DSPS-D hy-
pothesizes a surface normal n and a BRDF ⇢(·) and tests
whether they approximately satisfy an image formation
model. Dropping the constraint that the BRDF model needs
to be closed under linear combinations may appear to
diminish the expressiveness of the model, because it means
that our appearance tensor needs to relatively densely cover
the space of materials that we want to infer. However, DSPS-
D can perform much faster surface normal estimation than
DSPS-C using existing nearest-neighbor search techniques
and can in practice achieve an accuracy comparable to
DSPS-C.

Let N = {ni | i = 1, . . . , N} and B = {⇢j(·) | j =
1, . . . ,M} be sets of discretized surface normals and ref-
erence BRDFs, which we call surface normal candidates
and BRDF candidates, respectively. If we hypothesize a
surface normal ni 2 N and BRDF ⇢j(·) 2 B for a scene
point, using L0  L known light directions, we can slice
a sampled appearance vector dij 2 RL0

+ from the appearance
tensor T . With unknown scaling s, the measurement vector
m can be approximated as follows

m ' sdij . (5)

We can transform this into a scaling-free form as

m̃ ' d̃ij

where m̃ = m
kmk2

and d̃ij = dij

kdijk2
. We can test the validity

of the hypothesized ni and ⇢j(·) by the `2 measurement
reconstruction error, and, therefore, the optimal surface nor-
mal n⇤ and BRDF ⇢⇤(·) can be found as

n⇤ = ni⇤ , ⇢
⇤(·) = ⇢j⇤(·)

i⇤, j⇤ = argmin
i,j

���m̃ � d̃ij

���
2

2
.

This objective is equivalent to the one of nearest-neighbor
search with Euclidean distance; hence, we can rely on any
exact or approximate nearest-neighbor search method to
search for the optimal surface normal and BRDF.

Shadow masking: Our nearest neighbor search strategy can
naturally take additional sampled appearance vectors. Here,
we introduce a shadow masking strategy for augmenting

the sample appearance vectors to deal with cast shadows
that has been ignored in our image formation.

We simulate cast shadows by masking several elements
of the sampled appearance vectors. It is empirically known
that cast shadows appear with some regularity instead of
randomly [24]; therefore, we apply the method for the
occlusion layer proposed by Li et al. [24] to generate shadow
masks. Importantly, the shadow masks are generated for
every sampled appearance vector independently to simulate
diverse patterns of shadows. Once the shadow masks are
applied to the original sampled appearance vectors, the
masked appearance vectors are appended to the original
ones. The shadow masking is performed K times to all the
original sampled appearance vectors, leading K + 1 times
larger set of sampled appearance vectors.

5 EXPERIMENTS

This section describes experiments on DSPS-C’s and
DSPS-D’s accuracy and computational efficiency using syn-
thetic and real-world data. We also show comparisons with
recent photometric stereo methods.

5.1 Implementation

DSPS-C: For all experiments in this paper, we set M 0 = 3,
which was the most robust to noisy images.1 Before ap-
plying SVD, we normalize each column of Di as with the
existing work [7].

DSPS-D: Our DSPS-D can benefit from any exact or approx-
imate nearest-neighbor search method based on `2 distance
(e.g., [33], [34], [35], [36], [37]) implemented in modern
libraries [36], [38], [39], [40]. In our experiments, we used
a simple linear search algorithm implemented in FAISS [39]
as an exact method. As an approximate method, we adopted
a combination of an inverted file system with asymmet-
ric distance computation (IVFADC) [41] and a hierarchical
navigable small worlds (HNSW) indexing structure [42]
implemented in FAISS [39]. (See the supplemental material
for details on the hyper-parameters.) DSPS-D using FAISS
can be performed on either a CPU or a GPU.

In the following, we denote DSPS-D with exact and
approximate nearest-neighbor search as DSPS-DE and
DSPS-DA, respectively.

5.2 Preparation
Appearance tensor: The appearance tensor is constructed
from three components; BRDFs, surface normals, and
light directions. For BRDFs, we used the MERL BRDF
database [16] which consists of 100 distinct BRDFs including
diffuse, specular, and metallic materials.2 For surface normal
sampling we followed Hui’s method [7] and obtained 20001
candidates. In all experiments of this paper, we assume that
the appearance tensor contains the known light directions.
In Sec. 5.9, we discuss how the surface normal estimation
accuracy is affected by the discretization of light directions.

Here we explain the test datasets used for evaluating the
proposed method.

1. See the experimental analysis in the supplementary material.
2. See the supplementary material for analysis of our method with

appearance tensors constructed from other BRDFs.
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Fig. 4: Ground truth surface normals and example images
of PrincipledPS dataset.

MERL sphere dataset: The MERL sphere dataset consists
of 100 synthetic sphere scenes rendered with the 100 MERL
BRDFs [16]. We rendered the images under ten lighting envi-
ronments consisting of {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
uniformly distributed light sources. (See the supplemental
material for illustrations of the light distributions.) Image
resolution was set to 100 ⇥ 100, yielding 7860 valid pixels.

PrincipledPS dataset: To quantitatively evaluate our
method on varying sets of BRDFs, textures, and shapes, we
rendered a synthetic dataset including PLANAR, BUNNY,
DRAGON, and ARMADILLO shapes with the Principled
BSDFs [22]. We call this dataset as PrincipledPS. For each
shape, we prepared two materials, Specular and Metallic, as
defined by Ikehata [21], four spatially varying textures, and
sparse and dense (10 and 100) light configurations, totally,
64 scenes. Figure 4 shows the ground truth surface normal
maps and example images of the PrincipledPS dataset.

Real-world dataset: We use an existing real-world dataset,
the DiLiGenT dataset [43], which contains 10 real objects
of general reflectance illuminated from 96 different known
directions. This dataset provides the ground truth surface
normal maps for all objects measured by high-precision
laser scanning that can be used for quantitative evaluation.
For the Bear object we discarded the first 20 images where
a part of measurements is corrupted as pointed out by
Ikehata [21]. In addition to the original dataset, for testing
sparse light cases, we prepared 20 datasets, each containing
10 randomly selected images.

As baselines we used Lambertian photometric stereo
(LPS) [1], the model-based method ST14 [3], the virtual
exemplar-based method HS17 [7], the unsupervised learn-
ing (i.e., neural inverse rendering)-based method NIR-
PS [28], the supervised learning methods PX-NET [23], PS-
FCN+N [18], WJ20 [27], CNN-PS [21], and SPLINE-Net [25].
For a fair comparison in computation time, we reimple-
mented HS17 in Python based on the authors’ MATLAB
implementation. We solve the non-negative least-squares
sub-problem in HS17 using scipy.optimize.nnls from
the SciPy package [38] resulting in the authors’ implementa-
tion speedup without any accuracy drop. We implemented
the coarse-to-fine search they proposed for efficient surface
normal estimation following their original implementation.
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Fig. 5: (a) CPU computation time of our methods and HS17.
(b) GPU computation time of DSPS-D and CNN-PS.

Since PS-FCN+N is trained on a dataset with MERL BRDFs,
for fear of data leakage we omit PS-FCN+N in the experi-
ments on the MERL sphere dataset. While the published,
pre-trained SPLINE-Net model has been trained specifically
for 10 lights, it works well for other small numbers of light
sources. Therefore, we show SPLINE-Net’s scores for cases
other than 10 lights for reference in this paper. Further, for
testing with the MERL sphere dataset, although PX-NET,
PS-FCN+N, and WJ20 include the target material in their
pre-trained models, we list their scores for reference.

5.3 Efficiency of surface normal estimation

This section shows comparisons of computation times with
the baseline methods running on CPU and/or GPU. We use
the MERL sphere dataset with the ten light sets. We mea-
sured the computation times of DSPS-C, DSPS-DE, DSPS-
DA, and the existing exemplar-based method HS17 on a
CPU. We also measured the computation time of DSPS-DE,
DSPS-DA, CNN-PS, and PS-FCN+N on a GPU. In this sec-
tion, we eliminate the results of inefficient iterative methods,
ST14 and NIR-PS, and the extension of CNN-PS, i.e., PX-
NET and SPLINE-Net, that are always slower than CNN-
PS. We used 40 cores of an Intel® Xeon® Gold 6148 CPU
@ 2.40 GHz and NVIDIA TITAN X GPU. On the CPU we
performed pixel-wise parallelization. Note that our methods
are executable on common CPUs and GPUs because the
sampled appearance matrix only requires a small amount of
memory. For example, sampled appearance matrices stored
in 64-bit floating point numbers for a typical setting, where
N = 20001, M = 100, L = 100, only require 3.1 GB storage
space.

Figure 5a shows the computation time for one scene on
the CPU, averaged over all MERL spheres for each light
configuration. DSPS-DA is 3-4 orders of magnitude faster
than HS17 while DSPS-C and DSPS-DE are around one
order of magnitude faster than HS17. Figure 5b shows the
computation time for one scene on the GPU. DSPS-DE and
DSPS-DA are accelerated one order of magnitude using the
GPU. While typical exemplar-based approaches are compu-
tationally expensive, our methods achieve comparable or
faster inference than the learning-based methods using feed-
forward networks.

5.4 Accuracy of surface normal estimation

We estimated surface normals on synthetic and real datasets
to confirm that our methods work with diverse scenes.

This is the authors' version of the work. It is posted here by permission of IEEE for personal use. Not for redistribution. 
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TABLE 2: Comparisons on the MERL sphere dataset with light configuration 10 sets. Numbers represent averages and
standard deviations of angular errors over all pixels.

#lights 10 20 30 40 50 60 70 80 90 100

Ex
em

pl
ar

-
ba

se
d

DSPS-C 4.2/6.6 2.5/3.6 2.2/3.0 2.1/2.9 2.0/2.8 1.9/2.7 1.9/2.7 1.9/2.6 1.8/2.7 1.8/2.7

DSPS-DE (K = 0) 3.0/4.3 2.2/3.1 2.0/2.8 1.9/2.6 1.8/2.5 1.8/2.4 1.7/2.4 1.7/2.4 1.7/2.4 1.7/2.4

DSPS-DA (K = 0) 3.0/4.3 2.3/3.1 2.1/2.8 2.1/2.7 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5 2.0/2.5

DSPS-DE (K = 1) 3.2/4.8 2.3/3.5 2.1/3.0 1.9/2.7 1.8/2.6 1.8/2.5 1.7/2.5 1.7/2.4 1.7/2.4 1.7/2.4

DSPS-DA (K = 1) 3.2/4.8 2.4/3.5 2.2/3.0 2.1/2.8 2.1/2.6 2.1/2.6 2.1/2.6 2.1/2.6 2.1/2.6 2.1/2.6

HS17 3.6/5.2 2.2/3.3 1.9/2.8 1.8/2.6 1.7/2.5 1.6/2.4 1.6/2.4 1.7/3.5 1.6/2.4 1.6/2.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 13.4/14.3 11.0/14.3 9.3/12.8 9.7/12.9 3.5/7.2 3.4/7.4 3.4/7.9 3.5/8.2 3.5/8.3 3.5/8.5

PS-FCN+Na 4.5/4.6 2.7/2.6 2.7/2.5 3.0/2.7 3.1/2.7 3.2/2.9 3.4/3.0 3.4/3.0 3.6/3.1 3.7/3.2

WJ20a 3.7/4.2 3.3/3.5 3.2/3.3 3.2/3.4 3.3/3.3 3.2/3.3 3.3/3.3 3.3/3.3 3.3/3.4 3.3/3.2

SPLINE-Net 13.0/20.0 9.3/16.1 10.2/13.1 15.9/18.4 27.5/28.8 38.8/33.8 45.5/34.8 49.0/33.7 51.4/32.9 50.0/31.5

CNN-PSb 33.6/23.9 6.2/6.4 4.7/5.7 4.0/5.3 3.7/5.2 3.2/4.6 3.0/4.2 2.9/4.3 2.6/3.9 2.5/3.8

NIR-PS 21.7/44.8 15.6/36.3 18.0/40.8 15.2/37.0 18.9/42.5 16.0/38.5 14.8/35.7 14.4/34.2 13.7/33.5 14.6/34.3

M
od

el
-

ba
se

d ST14 15.5/9.9 11.5/15.6 10.9/13.7 10.9/13.9 9.8/13.4 5.5/8.1 2.7/4.4 1.7/3.1 1.4/2.6 1.2/2.3

LPS 13.6/9.9 13.0/9.4 12.8/9.4 12.7/9.3 12.7/9.3 12.6/9.3 12.6/9.4 12.6/9.4 12.6/9.4 12.6/9.4
a Training dataset of PX-NET, PS-FCN+N, and WJ20 include target materials. b CNN-PS is trained with 50-100 lights.

MERL sphere: We compared our methods and the baseline
methods using the MERL sphere dataset. For the materials
in our methods and HS17, we applied a leave-one-out
scheme, testing them on one MERL BRDF while construct-
ing the appearance tensor from the remaining 99 BRDFs so
that the appearance tensor does not contain the target BRDF.

Table 2 shows the averages and standard deviations of
angular errors over all pixels in the MERL sphere dataset
for the ten light configuration sets. The small averages and
standard deviations show that our methods stably yield
small errors in all light configurations when compared with
the baseline methods. While HS17 also achieves competitive
accuracy, it is more than three orders of magnitude slower
than DSPS-DA as shown previously. Incidentally, NIR-PS
yields large angular errors in this experiment. We observed
that NIR-PS has extremely large errors for several materials,
which affect the averaged scores. We show mean angular
errors of the baseline methods for each material in the
supplemental material.

PrincipledPS: We conducted quantitative evaluation on
the PrincipledPS dataset. While training datasets of PX-
NET, CNN-PS, and SPLINE-Net are also rendered with
the Principled BSDFs and therefore may include the target
materials, their scores are shown as reference.

Table 3 shows averages of angular errors over four
scenes, i.e., four textures, for each shape, material, and
number of lights. The results on the PrincipledPS dataset
also show that our DSPS-D achieves accurate surface normal
estimation for every scene with both sparse and dense
lightings. PS-FCN+N and WJ20 also yield promising results;
however, the different behavior than ours is observed es-
pecially when few lights on the PLANAR, which is an
extreme shape but often appears in the real-world. One
possible reason for the difference is that PS-FCN+N and
WJ20 use patch-based processing, i.e., their surface normal
estimates depend on not only local appearances but also
global appearances. Therefore, the accuracy of patch-based
methods slightly degrades on scenes with non-informative
global appearances.

Table 3 exhibits that DSPS-C causes a large error on the

metallic PLANAR scene. The main reason of the large error
is due to that the choice of M 0 = 3 was too large for the
10 lights case, making DSPS-C unstable in the few lights
case. The second reason is that DSPS-C exhibits a higher
standard deviation for metallic objects, and the surface nor-
mals contained in the PLANAR scene were particularly hard
for DSPS-C by chance. In the supplementary material, we
verified these with an additional experiment using SPHERE
scenes having the identical materials and textures with the
PLANAR scenes and confirmed that the mean angular error
of DSPS-C converges to the comparable one with other
exemplar-based methods if M 0 is suitable and a target scene
has diverse surface normals.

DiLiGenT: We show quantitative results on the real-
world dataset DiLiGenT in Table 4, where we compare
our methods with the baseline methods in terms of mean
angular error. Figure 6 shows visual comparisons between
our methods and the baseline methods. Our DSPS methods
demonstrate comparable or better accuracy compared to
the exemplar-based methods, although showing a slight
degradation compared to the learning-based methods.

For the scenes with 96 lights, DSPS-DE achieves the
best score on the BALL object having fully convex surfaces.
The same trend of high accuracy on convex regions can be
observed in other scenes, e.g., the body of the COW object
and the arm of the READING object in Fig. 6. Even for non-
convex regions, our DSPS-DE with the shadow masking
yields robust surface normal estimates as shown by the
improvement on DSPS-DE owing to the shadow masking in
Table 4. Still, the learning-based methods are superior to our
methods particularly on BUDDHA, GOBLET, HARVEST, or
READING, where strong inter-reflections are observed.

For the scenes with 10 lights, our methods, especially
with shadow masking, achieve comparable accuracy to the
learning-based methods. The standard deviations of our
DSPS-D tend to be small compared to the baselines, which
suggest that DSPS-D is insusceptible to the light distribu-
tions. This robustness is preferable since it is hard to know
which light distribution is the best for each method in
practice.

This is the authors' version of the work. It is posted here by permission of IEEE for personal use. Not for redistribution. 
The final authenticated publication is available at DOI: 10.1109/TPAMI.2022.3198729



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 3: Comparisons on the PrincipledPS dataset. Numbers represent averages of angular errors over four scenes, i.e.,
four textures. S and M indicate specular and metallic, respectively.

10 lights 100 lights

PLANAR ARMADILLO BUNNY DRAGON Avg. PLANAR ARMADILLO BUNNY DRAGON Avg.

S M S M S M S M S M S M S M S M

Ex
em

pl
ar

-
ba

se
d

DSPS-C 3.6 28.2 3.4 4.6 3.4 4.5 3.4 4.8 7.0 1.2 1.1 1.7 3.7 1.8 3.4 1.7 3.6 2.3

DSPS-DE (K = 0) 1.2 1.9 2.4 4.7 2.4 4.6 2.4 4.9 3.0 1.0 1.1 1.9 4.9 1.8 4.5 1.8 4.6 2.7

DSPS-DA (K = 0) 1.1 1.8 2.4 4.7 2.4 4.6 2.4 4.9 3.0 1.4 1.8 2.1 5.2 2.1 4.9 2.0 4.8 3.0

DSPS-DE (K = 1) 1.2 1.9 2.4 4.7 2.4 4.6 2.4 4.9 3.1 1.0 1.1 1.9 4.9 1.8 4.5 1.8 4.6 2.7

DSPS-DA (K = 1) 1.1 2.0 2.4 4.7 2.5 4.6 2.4 4.9 3.1 1.2 1.3 2.2 5.1 2.2 4.8 2.1 4.8 3.0

HS17 1.5 1.6 3.1 4.7 2.9 4.6 2.9 4.7 3.3 1.3 1.0 1.8 2.9 1.6 2.7 1.8 2.7 2.0

Le
ar

ni
ng

-
ba

se
d

PX-NETa 5.8 15.5 4.4 5.2 5.1 5.5 4.4 5.5 6.4 1.2 1.1 1.5 1.3 1.5 1.2 1.6 1.3 1.4

PS-FCN+N 2.2 11.6 3.1 7.1 2.5 7.0 3.2 7.6 5.6 1.7 4.1 2.6 4.6 2.5 4.5 2.6 4.9 3.4

WJ20 2.4 7.5 2.8 4.4 2.9 4.1 2.7 4.6 3.9 2.0 2.7 2.4 3.5 2.5 3.0 2.3 3.5 2.7

SPLINE-Neta 5.9 12.4 5.9 6.5 5.8 7.0 5.7 7.2 7.0 49.6 17.9 36.3 46.2 43.4 47.4 36.0 48.0 40.6

CNN-PSab 29.9 27.6 30.9 29.7 36.4 32.0 32.0 29.0 30.9 2.2 7.7 1.5 2.0 2.0 2.0 1.6 2.1 2.6

NIR-PS 1.5 94.6 2.2 3.6 1.3 3.6 2.1 4.0 14.1 0.4 81.7 2.1 3.8 1.5 3.6 2.1 3.4 12.3

M
od

el
-

ba
se

d ST14 6.8 23.1 13.2 11.2 14.1 11.2 12.6 10.1 12.8 0.5 2.7 7.7 6.4 2.7 2.2 7.7 6.6 4.6

LPS 4.2 23.2 10.3 10.2 10.8 9.9 9.5 9.0 10.9 3.3 23.4 9.0 7.5 8.9 7.6 7.9 7.2 9.4
a Training dataset of PX-NET, CNN-PS, and SPLINE-Net may include target materials. b CNN-PS is trained with 50-100 lights.

TABLE 4: Comparisons on the DiLiGenT dataset with 96 and 10 lights. Numbers in the table above are mean angular errors
in degrees. Numbers in the table below are averages and standard deviations of mean angular errors over 20 trials.

96 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

Ex
em

pl
ar

-
ba

se
d

DSPS-C 1.6 5.9 13.1 6.1 9.2 11.0 18.7 6.6 7.2 15.0 9.4
DSPS-DE (K = 0) 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
DSPS-DA (K = 0) 1.4 6.4 14.2 6.8 8.0 11.7 17.5 7.4 7.4 15.3 9.6
DSPS-DE (K = 1) 1.3 5.3 11.7 5.9 7.3 10.2 16.7 6.6 7.0 14.0 8.6
DSPS-DA (K = 1) 1.4 5.3 11.8 5.9 7.5 10.5 16.8 6.6 7.1 14.0 8.7

HS17 1.5 6.2 13.9 6.4 9.2 10.8 18.8 7.0 7.9 15.3 9.7

Le
ar

ni
ng

-
ba

se
d

PX-NET 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2
PS-FCN+N 2.6 5.4 7.5 4.7 6.7 7.8 12.4 5.9 7.2 10.9 7.1

WJ20 1.8 4.1 6.1 4.7 6.3 7.2 13.3 6.5 6.4 10.0 6.6
CNN-PS 2.1 4.2 8.1 4.4 7.9 7.4 13.8 5.4 6.4 12.1 7.2

NIR-PS 1.6 6.1 11.0 5.6 5.8 11.2 22.0 6.5 8.5 11.3 9.0

M
od

el
-

ba
se

d ST14 1.8 5.1 10.7 6.1 13.8 10.2 25.6 6.5 8.7 13.0 10.2
LPS 4.2 8.5 14.9 8.4 25.6 18.5 30.6 8.9 14.6 20.0 15.4

10 lights

BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING Avg.

Ex
em

pl
ar

-
ba

se
d

DSPS-C 4.2/1.2 7.9/0.7 16.7/1.4 8.5/1.0 12.4/1.2 15.2/1.3 24.2/0.8 9.3/0.8 11.7/1.7 21.1/1.6 13.1

DSPS-DE (K = 0) 2.4/0.5 7.7/0.7 16.1/0.8 8.0/0.4 10.5/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.8/0.7 18.1/1.1 11.6

DSPS-DA (K = 0) 2.5/0.5 7.7/0.7 16.0/0.8 8.0/0.4 10.6/0.6 14.0/0.6 20.9/0.6 8.8/0.4 9.9/0.7 18.0/1.1 11.6

DSPS-DE (K = 1) 2.4/0.5 6.1/0.4 12.3/0.7 6.9/0.4 9.7/0.6 12.0/0.7 19.4/0.4 7.6/0.5 9.1/0.7 15.6/1.1 10.1

DSPS-DA (K = 1) 2.4/0.5 6.1/0.4 12.3/0.7 6.9/0.4 9.7/0.6 11.9/0.6 19.4/0.4 7.6/0.5 9.1/0.7 15.6/1.1 10.1

HS17 3.8/0.9 8.1/0.8 16.3/1.0 8.5/0.6 12.9/1.1 14.1/0.7 22.0/0.7 9.2/0.6 11.1/1.0 18.2/1.3 12.4

Le
ar

ni
ng

-
ba

se
d

PX-NETa 2.3/0.4 4.7/0.3 9.6/0.5 6.3/0.4 7.3/0.6 9.6/0.9 16.2/0.7 7.0/0.4 7.8/1.1 13.5/0.8 8.4

PS-FCN+N 4.3/1.0 6.8/0.8 9.7/0.8 6.3/0.6 12.2/1.3 10.5/0.8 17.5/1.0 7.7/0.6 10.0/1.2 13.0/1.1 9.8

WJ20b 2.2/0.4 5.0/0.2 7.0/0.3 5.5/0.2 7.2/0.6 8.7/0.7 15.1/0.7 7.0/0.4 8.1/0.9 10.9/0.8 7.7

SPLINE-Net 5.1/1.0 5.9/0.6 10.7/1.0 7.9/0.9 9.0/1.1 10.7/1.2 19.2/1.0 9.4/0.8 12.5/1.4 15.3/0.8 10.6

CNN-PSc 10.2/5.5 14.2/4.8 15.0/4.3 12.4/5.8 13.9/1.8 15.5/2.8 20.3/2.6 12.9/4.8 14.9/3.6 16.4/3.5 14.6

NIR-PS 1.6/0.2 5.9/0.6 10.9/0.8 6.2/0.4 13.3/6.5 16.8/10.0 28.5/4.1 8.0/4.6 8.9/1.0 15.3/4.7 11.5

M
od

el
-

ba
se

d ST14 5.7/0.6 10.0/0.4 16.4/0.7 9.6/0.5 26.3/0.8 20.0/0.9 31.0/0.7 10.2/0.4 16.2/1.0 19.7/1.3 16.5

LPS 4.6/0.5 9.0/0.4 15.9/0.7 9.2/0.4 26.6/0.7 19.7/0.9 31.4/0.6 9.6/0.4 15.6/1.0 20.2/1.4 16.2
a A model specific to few lights is used. b 10 + 1 lights are used, where 1 light is nearly collocated with the camera.
c CNN-PS is trained with 50-100 lights.
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Observation DSPS-C
DSPS-DE
(K = 1)

DSPS-DA
(K = 1) HS17 PS-FCN+N CNN-PS ST14 LPS
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Fig. 6: Angular error maps for BALL, COW, and READING objects from the DiLiGenT dataset [43] with all the 96 lights.
See the supplementary materials for more objects.

BEAR BUDDHA CAT GOBLET

+10� ⇠

0�

⇠ �10�

Fig. 7: Difference in the angular error maps between our
DSPS-DE with and without shadow masking. Blue indicates
pixels, where surface normal estimation is improved by
shadow masking, and red indicates the opposite.
TABLE 5: Mean angular errors of our DSPS-DE with K times
shadow masking on the DiLiGenT dataset. (The first and
second row correspond to the second and fourth row of the
top table in Table 4.)

K BALL BEAR BUDDHA CAT COW GOBLET HARVEST POT1 POT2 READING AVG.

0 1.3 6.3 14.0 6.8 7.8 11.5 17.4 7.3 7.4 15.2 9.5
1 1.3 5.3 11.7 5.9 7.3 10.2 16.7 6.6 7.0 14.0 8.6
3 1.3 5.2 11.7 5.9 7.3 10.2 16.7 6.6 7.0 14.0 8.6

Overall, we observe our DSPS shows comparable or
better accuracies compared to the existing exemplar-based
methods. For convex shapes, where the global illumination
effects can be mostly negligible, the accuracy by our method
can further be better than the learning-based methods; this
tendency is especially pronounced when few lights (e.g.,
10 lights). Even for non-convex shapes, the accuracy of
our DSPS-D is drastically improved by introducing shadow
masking without degrading the accuracy on convex shapes.

5.5 Analysis of shadow masking
As shown in Table 4, the shadow masking improves the
accuracy of our DSPS-D on non-convex objects. This section
shows the details of this improvement and discuss the
effective value of K for shadow masking.

Figure 7 shows the difference in the angular error maps
between our DSPS-DE with and without the shadow mask-
ing. Blue color indicates pixels where surface normal estima-
tion is improved by the shadow masking, while the red color
indicates the pixels that are degraded. This figure shows that
the shadow masking improves the surface normal estimates

at regions, where cast shadows are likely observed. As seen
in the figure, the shadow masking does not much affect the
surface normal estimates at convex regions.

Table 5 shows mean angular errors of our DSPS-DE with
K times shadow masking on the DiLiGenT dataset. The
results indicate that a greater K only gives the slight im-
provement. Considering that the K times shadow masking
leads to a K + 1 times larger set of sampled appearance
vectors, we conclude that a single time shadow masking
has the best balance between accuracy and efficiency.

5.6 Robustness to image corruptions
We examine the robustness of our methods and baseline
methods against common corruptions of photometric stereo
images, camera noise, ambient light, and saturation. We
prepared evaluation datasets by applying such corruptions
to the MERL sphere dataset with 100 lights. See the supple-
mentary material for details of simulating the corruptions.

Table 6 shows mean angular errors and standard de-
viations for each corrupted data. The results suggest that
exemplar-based methods including ours and HS17 are ro-
bust to uniform and small perturbations of measurements
(i.e., camera noise and ambient light) compared to learning-
based and model-based methods. For partial and relatively
large corruption (i.e., saturation), every method is generally
robust. In particular, ST14 is almost unaffected by saturation
since they eliminate large measurement values as outliers.

The robustness of exemplar-based methods can be ex-
plained by interpreting exemplar-based approaches as space
partitioning along the surface normal candidates: They
can be considered as separating the whole L0-dimensional
measurement vector space to N subspaces, each of which
corresponds to one of the surface normal candidates. Here,
each subspace has a spatial margin to its neighboring sub-
spaces, which yields robustness to measurement perturba-
tions caused by corruptions.

5.7 Effect of varying number of BRDFs in the appear-
ance tensor to DSPS-D
The experimental results so far show that our DSPS-D is
consistently comparable or better than DSPS-C in terms of
efficiency and accuracy. However, it is of interest to see
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TABLE 6: Mean angular errors and standard deviations
(mean angular error/standard deviation) on the corrupted
MERL sphere datasets with 100 lights. Numbers are in
degrees obtained from 100 MERL spheres.

No noise Camera noise Ambient light Saturation

DSPS-C 1.8/2.7 2.7/5.2 7.7/16.1 2.6/3.2
DSPS-DE 1.7/2.4 2.4/4.7 7.7/15.9 2.8/4.1
DSPS-DA 2.0/2.5 2.8/4.8 7.9/15.6 3.0/4.1

CNN-PS 2.5/3.8 6.2/14.0 8.9/18.8 2.6/3.8
HS17 1.6/2.4 2.4/4.7 7.7/15.9 2.6/3.8
ST14 1.2/2.3 22.9/13.3 34.5/33.7 1.2/2.3

10 20 30 40 50 60 70 80 90

Number of BRDFs M

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
an

gu
la

r
er

ro
r

[d
eg

.]

Fig. 8: Relationship between the accuracy of surface normal
estimation and the number of BRDFs in the appearance
tensor in DSPS-D. The solid line shows the mean angular
error of the ten trials, and the colored area shows the
maximum and minimum angular errors of the trials.

how the accuracy of DSPS-D varies when the number of
BRDFs of the appearance tensor is limited since DSPS-D
treats BRDFs in a discrete manner. Therefore, we validate
this using the MERL sphere dataset with 100 lights. For each
BRDF of the test data, we randomly sample BRDFs from the
remaining 99 MERL BRDFs, run DSPS-D, and repeat them
ten times for obtaining the average accuracy.

Figure 8 shows the relationship between the accuracy
of surface normal estimation and the number of BRDFs
in the appearance tensor. Naturally, the angular error of
estimated surface normals becomes smaller as the number
of BRDFs increases. The result suggests that 20 BRDFs or
more give promising surface normal estimation, around 2�

in average, around 3� at worst. The reason why DSPS-D
with such small number of BRDFs successfully works is
that the Eq. (5) only needs to be approximately satisfied for
a good surface normal estimation, and that is sufficient as
long as the nearest exemplar has a surface normal close to
the true one.

5.8 Surface normal discretization

Figures 9a and b show mean angular error and computation
time for varying numbers of surface normal candidates on
the MERL sphere dataset with 100 lights. Throughout the
paper we chose 20001 surface normal candidates because it
balances accuracy and computation time well. For accurate
surface normal estimation, 20001 or denser surface normal
candidates are recommended. However, the choice of sur-
face normal candidate discretization coarseness depends on
the use case and a coarser discretization may be acceptable
when fast inference is required.
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Fig. 9: (a) Mean angular errors and (b) Computation time
of our methods with varying number of surface normal
candidates. This experiment is performed on the MERL
sphere dataset with 100 lights.

TABLE 7: Increases of angular errors due to discretized
lights. The numbers represent the increase of mean angular
error in degrees on the MERL sphere dataset.

Number of lights
10 20 30 40 50 60 70 80 90 100

DSPS-C 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
DSPS-DE 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
DSPS-DA 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

5.9 Light direction discretization

In all experiments so far, we assumed that the appearance
tensor contains the light directions of the experiment at
hand. In practice, the appearance tensor rarely contains all
of the experiment’s light directions and we should use pre-
defined light directions closest to known light directions in-
stead. Here, we examine how the surface normal estimation
accuracy is affected by the discretization of light directions.

As pre-defined light directions in the appearance tensor,
we used 20001 discretized directions created in the same
manner with the surface normal candidates. When a set of
known light directions is given, we can slice out a sam-
pled appearance matrix/vector for a hypothesized surface
normal (and BRDF) and the set of light directions that
are closest to the known light direction in terms of cosine
distance. We can then follow the same estimation process
used so far. We performed such an experiment on the MERL
sphere dataset with ten types of light configurations.

Table 7 shows the increases of angular errors due to dis-
cretized lights on the MERL sphere dataset. We observe that
the increases are generally small (< 0.1�), which suggests
that it is acceptable to precompute an appearance tensor for
sufficiently finely discretized light directions and there is no
need to calculate a new appearance tensor for each lighting
setup.

5.10 Precomputation cost

Our DSPS-C and DSPS-D pay costs on precomputation for
each light configuration to enable efficient surface normal
estimation. This section investigates the costs of precompu-
tation for the CPUs and GPUs used in Sec. 5.3.

Figure 10 shows the precomputation times of our meth-
ods on a CPU and GPU for varying light configurations.
This result shows that our methods only require tens of
seconds or less. We consider that this cost that is only paid
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Fig. 10: Precomputation time of our three methods on a CPU
and GPU for varying light configurations.

once for each light configuration is worth paying for the
efficient inference shown in Figures 5a and b.

6 CONCLUSION

In this paper, we have presented Discrete Search Photomet-
ric Stereo (DSPS), where the photometric stereo problem
is cast as a discrete search problem over a set of finely
discretized surface normals. DSPS can stably recover surface
normals of a scene with spatially varying general BRDFs in
various light configurations. By putting most of the compu-
tation into a precomputation step, we enabled full search
over all surface normal candidates, leading to a solution
guaranteed to be optimal within the bounds of the objective
function and the discretization.

Experiments on synthetic and real-world datasets
showed that our DSPS has comparable or better accuracy
to state-of-the-art methods, particularly on convex surfaces
and in few lights case, while achieving 10–100⇥ acceleration
from existing exemplar-based method. The precomputation,
which significantly contributes to the acceleration, is also
efficient and even when using the appearance tensor with
pre-defined light directions that slightly deviate from the
actual light directions, this incurs only negligible errors.
In addition, we experimentally observed that our DSPS is
robust to image corruptions compared to model-based and
learning-based methods. Thus, our DSPS is one of the best
choices for scenes with mostly convex surfaces and/or few
light sources. In addition, because of its robustness against
various types of image corruptions, it is recommended
when the observed images are anticipated to contain image
corruptions.

The approach’s validity is also supported by the fact that
with the continuing increase of computation power, mem-
ory size, and the availability of many-core processors, the
applicability of full search strategies is expanding. We are
interested in seeing more applications along this direction.
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