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Abstract Recovering shape and albedo for the im-

mense number of existing cultural heritage artifacts

is challenging. Accurate 3D reconstruction systems are

typically expensive and thus inaccessible to many and

cheaper off-the-shelf 3D sensors often generate results

of unsatisfactory quality. This paper presents a high-

fidelity shape and albedo recovery method that only

requires a stereo camera and a flashlight, a typical cam-

era setup equipped in many off-the-shelf smartphones.

The stereo camera allows us to infer rough shape from

a pair of no-flash images, and a flash image is further

captured for shape refinement based on our flash/no-

flash image formation model. We verify the effective-

ness of our method on real-world artifacts in indoor

and outdoor conditions using smartphones with differ-

ent camera/flashlight configurations. Comparison re-
sults demonstrate that our stereoscopic flash and no-

flash photography benefits the high-fidelity shape and

albedo recovery on a smartphone. Using our method,

people can immediately turn their phones into high-

fidelity 3D scanners, facilitating the digitization of cul-

tural heritage artifacts.
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Fig. 1 Our setup uses a stereo camera and a flashlight, which
is common in modern smartphones, e.g., the iPhone X from
2017. We capture a stereo image pair to infer a rough depth
map and a flash/no-flash image pair to recover shape details
and surface albedo.

1 Introduction

Recording 3D shape and surface reflectance are both in-

valuable for digitally archiving and analyzing cultural

heritage artifacts. While the importance of digitally

archiving artifacts is generally recognized, it is still not

widely spread in many museums and libraries, mostly

due to the complexity of the digitization process that

comes with expensive specialized setups. To enable ev-

erybody to participate in digital archiving, a method

that is simple to operate and only requires a commod-

ity device is very much wanted.

With this goal in mind, this paper presents a

high-fidelity shape and albedo recovery method using

a simple imaging setup that is already available in

widespread devices. Our method only requires a stereo

camera and a flashlight as shown in Fig. 1, and takes
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three images in two shots from a fixed viewpoint as in-

put: Two images in one shot by a stereo camera, and

another image by one camera with a flashlight. By har-

nessing both geometric and photometric cues from the

input images, our method recovers a fine 3D shape and

a surface albedo map. Specifically, our method uses

the rough shape inferred from the stereo image pair

to estimate the no-flash environmental lighting. Using

our flash/no-flash image formation model, the high-

frequency details of the target scene are then recovered.

Unlike previous methods that rely on complex imag-

ing setups [9, 41], our setup is minimal to introduce

geometric and photometric cues. Other than an ordi-

nary monocular camera, our method only requires one

additional viewpoint (i.e., a stereo camera) and light-

ing condition (i.e., a flashlight). As will be shown later,

further reducing any input significantly downgrades re-

covery. Fortunately, many commodity smartphones to-

day are equipped with this imaging setup, and we will

demonstrate later in this paper that our method is nat-

urally applicable to such smartphones. With this setup,

recording can be conducted outside a darkroom (e.g.,

in an office room) and completed in a moment as it only

takes two shots without any camera movement. These

properties make the digitization process easy.

The key contributions of our work are as follows:

– A high-fidelity shape and albedo recovery method

working with a simple, compact, and wide-spread

imaging setup;

– A flash/no-flash image formation model for Lamber-

tian surfaces with non-uniform albedos under natu-

ral lighting;

– A robust shape and albedo recovery method that

harnesses both geometric and photometric cues.

This paper extends the preliminary version of our

work [7] in three important aspects: First, we generalize

the image formation model to flash/no-flash image pairs

captured with different camera exposure settings. This

generalization is crucial for the successful application

using off-the-shelf devices (see Sec. 3.1). Second, we ver-

ify the effectiveness of our imaging setup and recovery

method using off-the-shelf smartphones (in Sec. 4.2).

Finally, we show more examples of reconstruction in-

cluding outdoor objects.

2 Related work

Our reconstruction method is related to shading-based

shape recovery and flash photography.

Shading-based shape recovery: Geometric shape recov-

ery approaches such as stereo are useful for recovering

a coarse shape but have fundamental limitations in re-

covering high-frequency details [23]. In contrast, photo-

metric approaches can recover per-pixel surface normals

using shading cues in the images. In the past, various

approaches have been proposed for high-quality shape

recovery by combining the strengths of both geometric

and photometric approaches. For example, Ikeuchi [21]

recovers the depth map from a stereo pair of normal

maps, which are estimated by photometric stereo with

three lights.

While photometric approaches commonly assume

controlled lighting conditions without ambient lighting,

when they are combined with geometric approaches this

assumption is likely violated and they face more chal-

lenging lighting conditions. Basri et al. [3] verified that

for a Lambertian surface its reflectance can be modeled

as a low-dimensional linear combination of spherical

harmonics. Photometric stereo under natural illumina-

tion has been shown to be feasible after this theoretical

verification [4, 22]. Such approaches have been incorpo-

rated into geometric approaches. An algorithmic struc-

ture of such combinations is to estimate a coarse depth

map, then estimating illumination and albedo from the

coarse depth map, followed by an optimization includ-

ing but not limited to depth, shading, and smoothness

constraints [31, 37, 39, 40]. Estimating global spherical

harmonics coefficients usually fails in local areas where

cast shadows or specularities dominate the intensity.

To alleviate this problem, Han et al. [17] split illumi-

nation into a global and a local part, Or-El et al. [29]

handled local illumination based on first-order spheri-

cal harmonics, and Maier et al. [27] proposed spatially-

varying spherical harmonics. Besides a single color im-

age, photometric cues from different types of input have
been used to improve the reconstruction quality, for

example, from infrared images [9, 18], from RGB-D

streams [36, 38], or from multiple view images [14, 28].

Our work uses a simpler setup consisting of a stereo

camera and a flashlight. With two shots, our method

recovers fine geometry for Lambertian objects under

natural lighting.

Flash photography: Images taken with a flashlight have

been used for various computer vision tasks. Using the

light falloff property, a flash and no-flash image pair has

been used for image matting [34], foreground extrac-

tion [35], and saliency detection [19]. Under low-light

conditions, a flash image captures high-frequency de-

tails but changes the overall appearance of the scene,

while the no-flash image captures the overall environ-

mental ambiance but is noisy. This complementary

property has been used in photography enhancement
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(a) Initial shape (b) Coarse normal (c) Flash (d) No-flash (e) Fine normal (f) Albedo (g) Fine shape

Fig. 2 Pipeline of our method. Given (a) an initial rough shape from a stereo camera, we first estimate (b) a coarse normal
map. With (c) the flash and (d) the no-flash image, we optimize for (e) a fine normal map. Finally, we compute (f) the albedo
map and perform depth normal fusion to obtain (g) the fine shape. Section 3.2 details each step.

under dark illumination [12], denoising, detail transfer,

or white balancing [30].

Further, photometric cues introduced by a flash-

light are useful in stereo matching. Feris et al. [13]

demonstrated that the shadows cast by a flashlight

along depth discontinuities help to detect half-occlusion

points in stereo matching. Zhou et al. [42] showed the

ratio of a flash/no-flash pair can make stereo match-

ing robust against depth discontinuities. In addition,

flash images are used for recovering spatially varying

BRDFs (SVBRDFs). A single image captured from a

flash-enabled camera, or a flash/no-flash pair [1] is used

for SVBRDF and shape recovery of near-planar ob-

jects [2, 11, 24] or those with complex geometry [25].

Our work differs from the previous works in that we

explicitly parameterize the image observation lit by a

flashlight, and use the flash/no-flash image pair to de-

rive an albedo-free image formation model for geometry

refinement.

3 Proposed method

Figure 2 illustrates our method for shape and albedo re-

covery. The input to our method are (a) a rough depth

map inferred from a stereo image pair taken by a stereo

camera and (c)+(d) a flash/no-flash image pair taken

by the stereo camera’s reference camera. First, we com-

pute a coarse surface normal map from the depth map

as shown in (b). We then estimate the environmen-

tal lighting and refine the normal map based on our

flash/no-flash image formation model as in (e). Finally,

we fuse the fine normal map (e) and the coarse depth

map (a) to obtain the fine shape (f) and compute the

albedo map (g).

In the following, Sec. 3.1 describes our image forma-

tion model for the flash/no-flash image pair and Sec. 3.2

details the design choices of each step in our method.

3.1 Image formation model

Assuming Lambertian reflectance, the radiance r ∈ R+

emitted from a tiny surface patch can be modeled as

r = ρ s(n), (1)

where a shading function s : S2 → R depends on the en-

vironmental lighting and is scaled by the surface albedo

ρ ∈ R+. The shading function s is applied to the unit

surface normal n ∈ S2 ⊂ R3.

Let m ∈ R+ be the recorded brightness of the ra-

diance by a digital camera. Assume the camera has a

linear radiometric response, say 1 for simplicity, to the

radiance. The intensity m is then the scene radiance r

scaled by the camera exposure c ∈ R+ as

m = cr. (2)

The camera exposure c accounts lens-aperture, ISO,

and exposure time.

Now consider that a flash/no-flash image pair is

taken for an object by the same camera. Assume that

the viewpoint is fixed, the object is static, and the envi-

ronmental lighting stays the same during the capture.

A pixel at a fixed location in the flash/no-flash image

pair then records the radiance from the same surface

patch, scaled by possibly different camera exposures.

We use the subscript “nf” and “f” to indicate the no-

flash and flash images, respectively. Using Eqs. (1) and

(2), we can model the intensity recorded at the same

pixel location in the flash/no-flash pair as{
mnf = cnfρsnf ,

mf = cfρ(snf + sfo).
(3)

The additional shading sfo is introduced by the flash-

light (the subscript “fo” represents flash-only), which is

identical to the shading if the flashlight were the only

light source in the scene. Let γ = cf
cnf

be the ratio of the
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Fig. 3 Subtracting the γ-scaled no-flash image from the flash
image yields a virtual flash-only image. The ratio image is ob-
tained by dividing the gray-scale no-flash image by the gray-
scale flash-only image.

flash image’s exposure to the no-flash image’s exposure.

By modifying Eq. (3), we obtain{
mnf = cnfρsnf ,

mf − γmnf = cfρsfo.
(4)

The second equation implies a virtual flash-only image:

The computed intensity mf − γmnf is the flash-only

shading scaled by the albedo and the flash image’s ex-

posure. Figure 3 exemplifies a virtual flash-only image.

Notice that the shadows caused by natural lighting dis-

appear in the flash-only image, verifying the correctness

of the subtraction.

Further taking the ratio of the two equations in

Eq. (4) yields

γmnf

mf − γmnf
=
snf
sfo

. (5)

The division cancels out the unknown albedo ρ; there-

fore, our method can naturally handle spatially-varying

albedos unlike previous methods that assume piece-wise

uniform albedos [15, 16]. This albedo-free image forma-

tion model directly relates the shading to the measured

intensity. The effect of this albedo canceling is illus-

trated in Fig. 3. While surface albedo of the mat has a

complex spatial variation, only the shading information

remains in the ratio image.

Explicitly modeling the camera exposure in the im-

age formation model of Eq. (5) has practical merit. Us-

ing the identical exposure (γ = 1) in [7] is a special

case of the image formation model of Eq. (5); however,

in practice it causes overexposure in the flash image or

underexposure in the no-flash image. Equation (5) al-

lows us to properly expose each image in the flash/no-

flash pair.

Shading model: We now discuss how we model the no-

flash shading snf and the flash-only shading sfo. Sup-

pose a light ray in direction l ∈ S2 ⊂ R3 with intensity

e : S2 → R hits a surface patch. According to the Lam-

bert’s law, the reflected light or shading, is given by

s(n) = e(l) max(n>l, 0). (6)

Under natural lighting, light rays reach the surface

patch from infinitely many directions. The shading then

becomes the integral over all possible incident directions

s(n) =

∫
S2

e(l) max(n>l, 0) dl. (7)

As studied in [3, 33], a Lambertian surface acts as

a low-pass filter, and its shading under natural light-

ing is well characterized by the second-order spheri-

cal harmonics, i.e., the integral in Eq. (7) can be ap-

proximated by a linear combination of the second-order

spherical harmonics. Denoting the unit surface normal

n = [n1, n2, n3]>, the spherical harmonics up to the

second order can be stacked into a vector h(n) as

h(n) = [1, n1, n2, n3, n1n2, n2n3, n3n1, n
2
1−n22, 3n23−1]>.

The shading under no-flash illumination snf is then a

linear combination of these spherical harmonics. Stack-

ing the 9 coefficients into a vector lnf ∈ R9 yields

snf = h(n)>lnf . (8)

Note that l and lnf are different; l is a light ray direction,

and lnf is a stack of spherical harmonic coefficients.

For the flashlight, we assume it is a point light lo-

cated at the optical center of the camera. The incident

light direction l is thus the same as the camera’s viewing

direction v for each surface patch. We further assume

that the flashlight emits light uniformly in all directions

and the light fall-off effect is negligible. As the flashlight

is the only light source contributing to the shading sfo,

Eq. (6) can be applied. Let ef be the flashlight intensity.

Equation (6) then reads

sfo = ef max(n>l, 0)= ef max(n>v, 0)= efn
>v. (9)

We can drop the max(·, 0) term because n>v is always

greater than 0 if the surface patch is visible to the cam-

era. Inserting Eqs. (8) and (9) into Eq. (5) yields

γmnf

mf − γmnf
=

h(n)>l′

n>v
, (10)

where l′ = lnf/ef is the spherical harmonics coefficient

vector scaled by the flashlight intensity, and we will

call l′ global lighting vector. This final image formation

model now explicitly relates surface normal and envi-

ronmental lighting to the measured intensity.
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3.2 Shape and albedo recovery

This section details the design choice for each step in

our shape and albedo recovery method shown in Fig. 2.

Obtaining coarse surface normals: We compute the

initial normal map from the depth map using

PlanePCA [20]. Given the camera intrinsics, we convert

the depth map into a point cloud in camera coordinates

and then find each point’s surface normal by fitting a

plane to its nearest neighbors. Formally, given a set of

points P = {p1,p2, ...,pn | pi ∈ R3}, we find the coarse

surface normal vector n̂i at pi by minimizing

n̂i = argmin
n̂i

∑
pj∈N (pi)

(pj − p̄i)
>n̂i, (11)

where N (pi) is the set of pi’s neighbors, and p̄i is the

mean of all pj ∈ N (pi). We search for pi’s neighbors

by performing a ball query as

N (pi) = {pj |
∥∥pj − pi

∥∥
2
< r, ∀pj ∈ P}, (12)

where r is an empirically chosen ball search radius.

PlanePCA robustly estimates a coarse, smooth normal

map that expresses low-frequency shape which we use

in the following lighting estimation step.

Computing the global lighting vector: Our goal now is,

given the flash/no-flash image pair and a coarse nor-

mal map, to estimate the low-dimensional global light-

ing vector l′ in Eq. (10). Note that solving lnf and ef
separately is unnecessary for shape recovery; unknown

ef barely scales the recovered albedo map.

Suppose there are p pixels in the region of interest,

i.e., the region of the foreground object. We stack the

row vectors h(n̂)>/n̂>v for each pixel vertically into a

matrix N ∈ Rp×9 and stack the measured γmnf/(mf −
γmnf) into a vector m ∈ Rp. l′ can be obtained by

solving the following over-determined system

Nl′ = m. (13)

Although the coarse normal map only expresses a low-

frequency shape, we will show in the experiment that

the estimated lighting is still as accurate as if it is esti-

mated from a ground truth normal map.

Refining the normal map: We formulate the surface

normal refinement as per-pixel optimization. The en-

ergy function consists of a shading constraint, a surface

normal constraint, and a unit-length constraint as

min
n
Es(n) + λ1En(n) + λ2Eu(n), (14)

(a) Flash / no-flash (b) No-flash img. (c) Flash-only img.

Fig. 4 The relation between the ratio of flash to no-flash im-
ages and cast shadows. Large ratios (bright pixels in (a)) are
likely caused by cast shadows under environmental lighting
(b); tiny ratios (dark pixels in (a)) are caused by cast shad-
ows under flashlight (c).

where λ1 and λ2 are weighting factors. The shading con-

straint Es measures the squared difference between the

ratio image and the estimated ratio image in Eq. (10)

Es(n) =

(
h(n)>l′ − n>v

γmnf

mf − γmnf

)2
. (15)

We multiply both sides of Eq. (10) with n>v to avoid

possible numerical issues.

The surface normal constraint En forces the refined

surface normal to be close to the coarse surface normal

n̂, i.e., their dot-product should be close to 1

En(n) = (1− n>n̂)2. (16)

Finally, Eu enforces unit length of the surface normal

Eu(n) = (1− n>n)2. (17)

The energy function Eq. (14) is non-convex due to the

non-convex domain S2. We solve it with BFGS [26].

After optimizing the normal map we can compute

the albedo map: According to Eq. (3) and Eq. (8),

ρ =
mnf

cnfh(n)>lnf
=

efmnf

cnfh(n)>l′
. (18)

A global scalar ambiguity remains in the albedo due to

the camera exposure cnf and flashlight intensity ef .

Handling cast shadows (optional): The spherical

harmonics-based image formation model of Eq. (6) can

handle attached shadows but not cast shadows [3]. Our

method is thus likely to break down and produce ar-

tifacts in regions dominated by cast shadows. In such

regions, instead of refining normals using our shading

constraints, the initial normal vector estimated from

the depth map is more reliable. To this end, we heuris-

tically introduce a confidence term ω into the energy

function’s shading constraint as

min
n
ωEs(n) + λ1En(n) + λ2Eu(n), (19)
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where ω is defined as

ω = exp
(
− (r − µ)2

2σ2

)
. (20)

r is the ratio of the flash to no-flash intensities, and µ

and σ are the mean and the standard deviation of the

ratio in the object region. This definition is based on the

observation that cast shadows strongly deviates the ra-

tio r from the mean ratio. From Eq. (5), once the pixel

intensity is distorted by cast shadow under environmen-

tal light or flashlight, the numerator or denominator

becomes close to zero, yielding too small or too large

ratio values. This phenomenon is shown in Fig. 4. When

environmental light causes shadows, the ratio of flash

to no-flash becomes high (bright pixels in Fig. 4(a));

when flashlight causes shadows, the ratio becomes low

(dark pixels in Fig. 4(a)).1

The above observation leads to the choice of ω

in Eq. (20). For pixels where the ratio deviates too

much from the mean ratio, the shading constraint in

Eq. (19) is unlikely reliable. The weight ω should be

small according to Eq. (20) so that the shading con-

straint contributes less to the normal refinement. As a

result, the normal vector stays close to the initial one.

Fusing the normal and the depth map: Finally, we fuse

the fine normal map with the coarse shape to obtain

the fine shape. To this end, we minimize the weighted

sum of normal integration and depth terms.

For the normal integration term, we follow the in-

verse plane fitting method [8] to minimize the sum of

plane fitting residuals as

En(z,d) =
∑
i

∑
j∈N (i)

(zjn
>
i K
−1ũj + di)

2, (21)

where z and d are the vectorized depth map and plane

distances to the coordinate origin, respectively. N (i) is

the pixel i and its four neighborhoods; zj , ni, uj , and di
are the j-th entry in z, the normal vector at pixel i, the

homogeneous coordinates of pixel j, and the i-th entry

in d, respectively. K ∈ R3×3 is the perspective camera

intrinsic matrix. The inner term of Eq. (21) measures

the distance of the 3D point zjK
−1ũj to the plane,

which is parameterized by its normal direction ni and

its distance di to the coordinate origin. For the depth

term, we force the estimated depth z to be close to the

initial depth ẑ

Ed(z) =‖z− ẑ‖22 . (22)

1 The flashlight can cause shadows because in practice its
location is non-identical to the camera’s optic center.

The whole objective now reads

min
z,d

En(z,d) + λdEd(z), (23)

where λd is a weighting factor to be tuned. Equa-

tion (23) can be formed as a sparse linear system, and

we use a multigrid method [6] to find its solution.

4 Experiments

This section evaluates our shape and albedo recovery

results quantitatively on synthetic images and qualita-

tively using real-world images captured with iPhones.

4.1 Experiments using synthetic images

Data generation: We rendered two publicly available

3D mesh models, the Stanford Bunny and a Statue2

with the physically-based renderer Mitsuba3. For the

no-flash image, we put each object under an environ-

ment map lighting4. We then simulate the flashlight

by placing an additional directional light source in the

same scene. We obtain the objects’ ground truth shape,

depth maps, and normal maps from the 3D models. To

simulate the coarse shape from a stereo camera, we ap-

ply the quantization on the ground truth depth map.

For the ground truth albedo, we use a texture image. To

visualize the refinement of the estimated albedo map,

we also compute the initial albedo according to Eq. (18)

using the coarse normal map.

Baselines: Although our setup combining a depth mea-

surement with flash/no-flash image pairs is new and has

no direct comparison methods, we assess our shape re-

construction results with the recent depth refinement

methods by Han et al. [17] and Yan et al. [39]. Unlike

ours, both baseline methods refine the initial shape us-

ing a single color image (i.e., without flash/no-flash im-

age pairs). We therefore aim to verify the effectiveness

of our use of flash/no-flash pairs via this comparison.

We implemented [17] as their source code is not pub-

licly available. For Yan et al.’s method [39], we used a

trained convolutional neural network provided by the

2 “The Getty Caligula” by CosmoWenman /
CC BY 4.0. https://sketchfab.com/3d-models/

the-getty-caligula-6bd927a5779d479e83303635c79f81ac,
last accessed on April 1, 2021
3 Mitsuba Renderer. https://www.mitsuba-renderer.

org/index_old.html, last accessed on April 1, 2021
4 High-Resolution Light Probe Image Gallery. http://vgl.

ict.usc.edu/Data/HighResProbes/, last accessed on April 1,
2021

https://sketchfab.com/3d-models/the-getty-caligula-6bd927a5779d479e83303635c79f81ac
https://sketchfab.com/3d-models/the-getty-caligula-6bd927a5779d479e83303635c79f81ac
https://www.mitsuba-renderer.org/index_old.html
https://www.mitsuba-renderer.org/index_old.html
http://vgl.ict.usc.edu/Data/HighResProbes/
http://vgl.ict.usc.edu/Data/HighResProbes/


Shape and Albedo Recovery by Your Phone using Stereoscopic Flash and No-flash Photography 7

Initial Estimated GT Initial Estimated GT Initial Estimated GT
Flash normals normals normals shape shape shape albedo albedo albedo
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Fig. 5 Shape and albedo recovery results on the synthetic Bunny and Statue datasets. The first column shows the rendered
flash/no-flash pair. The even rows display the error map. The numbers above the error maps are the mean angular error
(MAngE) of normal maps and the mean absolute error (MAbsE) of shape and albedo maps. Our method recovers high-
frequency shape details.

Table 1 MAbsE of the depth maps recovered by different
methods. Two objects, Bunny and Statue, are rendered un-
der three environmental lighting maps. “w/ conf.” means us-
ing Eq. (19) for optimization.

Env. map Method Bunny Statue

Pisa

Han et al. [17] 3.56e-3 3.59e-3
Yan et al. [39] 4.02 1.26
Ours 3.43e-3 2.42e-3
Ours w/ conf. 3.39e-3 2.48e-3

Doge

Han et al. [17] 3.66e-3 3.68e-3
Yan et al. [39] 4.02 1.26
Ours 3.54e-3 3.09e-3
Ours w/ conf. 3.44e-3 2.98e-3

Glacier

Han et al. [17] 3.65e-3 3.64e-3
Yan et al. [39] 4.02 1.26
Ours 3.45e-3 3.69e-3
Ours w/ conf. 3.41e-3 3.64e-3

authors5. For a fair comparison, we use the uniform

5 https://github.com/neycyanshi/DDRNet, last accessed
on April 1, 2021

albedo maps for all objects, since the baseline methods

assume the uniformness while our method is capable of

spatially-varying albedos. We also use the same initial

normal map and shape for all three methods. We mea-

sured the mean absolute error (MAbsE) between the

estimated and the ground truth shape.

Results: Table 1 summarizes the results of the quan-

titative comparison with the two baseline methods

(Han et al. [17] and Yan et al. [39]). Our method using

flash/no-flash image pairs achieves the lowest MAbsE

among all methods. Further, the confidence term ω in

the energy function improves the results by our method

in most cases, which verifies the effectiveness of our

strategy for handling cast shadows.

Figure 5 shows shape and albedo recovery results

by our method along with their coarse initializations

and the ground truth. We also show the mean angular

error (MAngE) of normal maps and MAbsE of shape

and albedo maps. While the coarse normal maps con-

tain only low-frequency content, our method recovers

https://github.com/neycyanshi/DDRNet
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Flash &
No-flash

Normals Relighting Error Map

MAbsE: 1.0e-2

0.1

0

MAbsE: 2.0e-2

0.1

0

Fig. 6 Lighting estimation from synthetic flash/no-flash im-
ages. Both relighting images are computed using GT normals
and spherical harmonic coefficients, estimated from (the first
row) GT normals or (the second row) coarse normals. The
major approximation error exists in the cast shadow. Esti-
mating spherical harmonic coefficients from coarse normals
achieves a comparable relighting result, verifying the correct-
ness of our lighting estimation using coarse normals.

high-frequency details and yields lower errors than the

initializations. This verifies the effectiveness of the opti-

mization Eq. (14) based on our flash/no-flash image for-

mation model Eq. (10). After the depth normal fusion,

the shape also reflects the recovered details. The albedo

map still appears to have shading components left due

to the approximation error of the second-order spher-

ical harmonics and the estimation error introduced by

cast shadow in practice. But the error of the estimated

albedo is smaller than that of the initial albedo. This

quantitative evaluation justifies our shape and albedo

recovery pipeline.

Figure 6 shows lighting estimation results on syn-

thetic data. We render the flash/no-flash images of

the Stanford Bunny with uniform albedo. To verify

that estimating spherical harmonic coefficients lnf from

coarse normals is reliable, we compare the relighting

images using coefficients estimated from ground truth

and coarse normals. We estimate the flashlight intensity

scaled coefficients l′ by Eq. (13), use the coefficients to

compute the relighting images by Eq. (8), and compute

the absolute error maps between the relighting and no-

flash images. For both relighting images, we compute

the spherical harmonic bases h(n) from ground truth

normals. We cancel the scale ambiguity between l′ and

lnf using the rendered no-flash image when visualizing

the relighting images and computing the absolute er-

ror maps. As the spherical harmonics approximates the

shading and assumes no cast shadow, the absolute error

map shows that the approximation error is inevitable

and mainly exists in cast shadow regions. The compa-

rable relighting results verify that using initial coarse

geometry for spherical harmonics estimation is reliable.

Fig. 7 Indoor and outdoor image capturing with phones.

4.2 Experiments using smartphones

The camera system we require has become standard in

modern smartphones. For example, iPhone models sup-

port stereo-based depth capture since the iPhone X re-

leased in 2017. This section describes shape and albedo

recovery results from images captured by iPhones. To

verify our method in practical scenarios, we captured

small statues indoors as well as outdoor stone statues

in an old shrine. Figure 7 shows the scenes of our image

capture in indoor and outdoor environments using an

iPhone X. Our method is handy to use as the recording

only requires mounting a smartphone on a tripod.

Image capturing and preprocessing: We implemented a

custom iOS application to control the image capture

pipeline. Instead of capturing a stereo image pair and

performing stereo matching by ourselves, we directly

acquire the depth map via Apple’s API6. Due to API

limitations, when the stereo camera is used for depth

map capture, raw image delivery is unsupported. We

instead take a no-flash image one more time to acquire

a raw image. In summary, one scene capture using an
iPhone required three shots

– a depth map associated with the intrinsic parame-

ters from the stereo camera,

– a raw flash image from the reference camera, and

– a raw no-flash image from the reference camera.

The flash/no-flash images are taken in auto-exposure

mode, and the exposure ratio γ is computed from the

EXIF tags.

The dimensions of acquired depth maps and

flash/no-flash images are 768×576 and 4032×3024, re-

spectively. To close the resolution gap, we unify their di-

mensions to 1008×756 by rescaling. Specifically, we up-

sample the depth map with bi-cubic interpolation and

downsampled the flash/no-flash images with inter-area

interpolation. The intrinsic camera parameters (focal

6 AVDetphData. https://developer.apple.com/

documentation/avfoundation/avdepthdata, last accessed on
April 1, 2021.

https://developer.apple.com/documentation/avfoundation/avdepthdata
https://developer.apple.com/documentation/avfoundation/avdepthdata
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length and principal point coordinates) are scaled ac-

cordingly. As an implementation detail, we found that

the depth map from the stereo camera and the color

images from the reference camera are misaligned. For-

tunately, we empirically found the misalignment was a

simple fixed offset, therefore shifted the pixels in the

flash/no-flash image pairs to align with the depth map.

Baselines: In addition to the quantitative comparisons

by the synthetic dataset, we also compare our results vi-

sually with two shape and reflectance estimation meth-

ods by Haefner et al. [15] and Boss et al. [5]. Our

method takes as input flash/no-flash images and a

depth map, while the baseline methods do not use all

the cues. We simulate Haefner et al.’s setup [15], which

uses a color image and a depth map, by removing the

no-flash image from our input. Boss et al.’s [5] setup,

which uses a flash/no-flash image pair, was simulated

by removing the depth map from our input.

We used the implementations released by the au-

thors7. For Haefner et al.’s method [15], we followed

their default parameter settings and used a 1008× 756

flash image and a 768× 576 depth map as input. Since

their method does not directly output a normal map, we

computed normal maps [32] from the estimated depth

maps. For Boss et al.’s method [5], we used their trained

neural network. To fit the 256 × 256 input image di-

mension, we cropped and downsampled our flash/no-

flash images. As Boss et al. [5] estimates Cook-Torrance

model parameters [10] as diffuse, roughness, and specu-

lar, we show the estimated diffuse maps and treat them

as albedo maps for notational simplicity.

Results: Figure 8 shows a visual comparison using the

input from an iPhone X. Overall, our setup combin-

ing flash/no-flash imaging and a rough depth map

yields the high-fidelity shape and albedo recovery.

Haefner et al.’s method [15] assumes the piece-wise

constant albedo. We thus observe noises on the es-

timated shape when the surface albedo has a com-

plex spatial variation (see the stone cow in Fig. 8).

Boss et al.’s method [5] explores shading information

from only two images, which is inherently ill-posed. As

a consequence, the estimated shapes are distorted; for

example, concave surfaces can be wrongly estimated as

convex, which can be seen in the stone cow’s ear.

Figure 9 displays visual results by our method for

cultural heritage artifacts. The first three objects are

about 10 cm high and were captured in an office room

7 DepthSRfromShading. https://github.com/

BjoernHaefner/DepthSRfromShading;
Two-shot-BRDF-shape. https://github.com/NVlabs/

two-shot-brdf-shape, last accessed on April 1, 2021.

Available
input

Estimated
albedo

Estimated
normals

Estimated
shape

Flash Use flash/no-flash images & depth (Ours)

No-flash Use flash image & depth [15]

Depth Use flash/no-flash images [5]

Flash Use flash/no-flash images & depth (Ours)

No-flash Use flash image & depth [15]

Depth Use flash/no-flash images [5]

Fig. 8 Visual comparison on an iPhone’s input. We use
all three input images: Flash/no-flash images and a depth
map. Removing the no-flash image leads to Haefner et al.’s
setup [15], which assumes piece-wise constant albedo and is
not suitable for surfaces with complex albedo variation. Re-
moving the depth map leads to Boss et al.’s setup [5], which
is ill-posed and results in distorted shape estimation. Stereo-
scopic flash and no-flash photography is key for high-fidelity
shape and albedo recovery via a smartphone.

(Fig. 7, left). Although there is no access to the ground

truth, our method qualitatively recovers the fine de-

tails that are absent in the initial shape derived from

the stereo camera despite of the complex albedo. The

last three rows of Fig. 9 show stone statues in an old

shrine, which are fixed in place outdoors and impossible

to move. With our stereoscopic flash/no-flash photogra-

phy, we can recover fine shapes of such outdoor objects

with a commodity smartphone without requiring spe-

cial lighting equipment or a darkroom.

https://github.com/BjoernHaefner/DepthSRfromShading
https://github.com/BjoernHaefner/DepthSRfromShading
https://github.com/NVlabs/two-shot-brdf-shape
https://github.com/NVlabs/two-shot-brdf-shape
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No-flash
Estimated

albedo
Initial

normals
Estimated
normals

Initial
shape

Estimated
shape

Fig. 9 Shape and albedo recovery results from an iPhone X; see Fig. 10 for its camera system. The objects in the first three
rows are about 10 cm in height and placed in an office room. The last three rows display outdoor stone statues in an old shrine.
Our method is able to recover shape details and surface albedo for both indoor and outdoor objects.
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Camera system No-flash
Estimated

albedo
Initial

normals
Estimated
normals

Initial
shape

Estimated
shape

iPhone X

iPhone 11

iPhone 12 Pro

Fig. 10 Reconstruction of the same object using smartphone models with different camera/flashlight configurations. The first
column depicts the camera systems of the iPhone X, 11, and 12 Pro. “UW”,“W”,“T”, and “F” are short for ultra-wide, wide
angle, telephoto camera, and flashlight, respectively. The reference camera in the stereo camera is colored red. Our method
generates stable results across different camera/flashlight configurations.

No-flash Flash Flash-only
Initial
shape

Estimated
normals

Estimated
shape

ISO:16
Exposure time: 1/1946 sec

ISO:16
Exposure time: 1/2208 sec

Fig. 11 Our method breaks down under direct sunlight due to the relatively weak flashlight. The virtual flash-only image
(enhanced for visibility) obtained via Eq. (4) hardly provides additional photometric cues, leading to unsatisfactory recovery.



12 Xu Cao et al.

To verify that our method is suitable for differ-

ent camera and flashlight configurations, we captured

images of the same object using an iPhone X, 11,

and 12 Pro. From the results in Fig. 10, we can see

that our method produces stable results on devices with

different camera systems, implying that our method is

applicable on a fairly large number of smartphones.

Regarding runtime, each object took about 30 s on a

2.3 GHz Intel i9 CPU. The computational bottlenecks

are the fine normal optimization of Eq. (14) and the

depth normal fusion of Eq. (23).

5 Conclusions

We presented a simple imaging setup for high-fidelity

shape and albedo recovery using a stereo camera and

flashlight. This setup can be naturally applied to two-

shot images from smartphones with a stereo camera,

which has become common today. Quantitative evalu-

ation using synthetic images justifies our high-fidelity

shape and albedo recovery pipeline. Qualitative results

using images captured by a smartphone demonstrate

our method’s effectiveness in real scenarios. The com-

parison with related methods shows that our setup is

the minimal setup to recover high-fidelity shape and

surface albedo via a smartphone.

Practical implications: We have verified our method for

digitizing cultural heritage artifacts using images cap-

tured by off-the-shelf smartphones. This implies that

people can immediately turn their smartphones into

high-fidelity 3D scanners using our setup and method.

We believe that our method is useful in a scenario of

crowd-sourced digital archiving, which accelerates the

digitization of the world’s cultural heritages.

Limitation: Our method breaks down if the object is

directly lit by strong environmental lighting, such as

sunlight; see Fig. 11 for an example. In this scenario,

compared with the sunlight the flashlight is too weak

to provide additional photometric cues. This problem

might be alleviated if smartphones adopt flashlights of

stronger intensity in the future. For now, we recommend

capturing outdoor objects on cloudy days or around

sunrise or sunset. Further, we require the object to be

close to the camera due to flashlight falloff in practice.

Future work: Our shape and albedo recovery method is

based on images shot from a single viewpoint. A prac-

tical extension would be to use multi-view images for

recovering complete objects.
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