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Abstract

We consider the deep point cloud analysis tasks where
the inputs of the networks are randomly rotated. Recent
progress in rotation-invariant point cloud analysis is mainly
driven by converting point clouds into their respective canon-
ical poses, and principal component analysis (PCA) is a
practical tool to achieve this. Due to imperfect alignment
of PCA, most of the current works are devoted to develop-
ing powerful network structures and features to overcome
this deficiency, without thoroughly analyzing the PCA-based
canonical poses themselves. In this work, we present a de-
tailed study w.r.t. the PCA-based canonical poses of point
clouds. Our investigation reveals that the ambiguity problem
associated with the PCA-based canonical poses is handled
insufficiently in some recent works. To this end, we develop
a simple pose selector module for disambiguation, which
presents noticeable enhancement (i.e., 5.3% classification
accuracy) over state-of-the-art approaches on the challeng-
ing real-world dataset.1

1. Introduction

Deep learning is thriving in point cloud analysis owing
to its excellent performance in various tasks. As a primi-
tive representation of 3D data that can be directly obtained
from sensors, point clouds are widely employed as the direct
inputs of modern neural networks [17, 30, 31].

However, there exists a fundamental problem when point
clouds are used in high-level applications, such as classifica-
tion, retrieval, and segmentation. In such applications, we
expect the networks to present consistent inferences w.r.t.
varying affine transformations on the point clouds. While
the effects of scaling and translation can be eliminated ef-
fectively by normalization and centralization [17], achieving
rotational invariance remains an open problem.

Various methods have been proposed to tackle this is-
sue. There are attempts to learn to align shapes in an op-

*Work partially done during an internship at LINE.
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rotation-invariant-pointcloud-analysis.

timal pose [7, 9], or robustify the networks via equivari-
ant properties [6, 20, 21]. However, these methods are not
strictly rotation-invariant and require the rotational space
to be densely sampled for data augmentation. Some works
also attempt to handcraft rotation-invariant geometric fea-
tures [4, 24, 36], although they inevitably suffer from infor-
mation loss compared to directly using the Cartesian coordi-
nates of the point clouds.

Some recent works propose to use intrinsically deter-
mined canonical poses to avoid information loss. As a practi-
cal tool, PCA enables us to intrinsically determine 3 orthogo-
nal bases (i.e., the principal axes) of a given point cloud and
align them to the world Cartesian coordinate. Despite the
effectiveness of PCA-based canonical poses, we observe that
some recent works are devoted to developing more powerful
networks without clearly studying the canonical poses them-
selves [10, 34, 35, 37]. Consequently, these works have not
explicitly tackled the ambiguity problem of the PCA-based
canonical poses, which hinders their performance.

In this work, we analyze in detail the PCA-based canoni-
cal poses in point cloud analysis. We study the actual number
of ambiguities of the PCA-based canonical poses, explore
the effects of PCA in point cloud analysis, and propose a
pose selector module for disambiguation. Our investiga-
tion reveals that the accurate identification of ambiguities
can lead to noticeable performance boosts than the recently
developed networks and features. I.e., state-of-the-art ap-
proaches would be outperformed by a large margin on the
challenging real-world dataset if ambiguities are properly
identified. We summarize our contributions as follows:

• We study the actual number of ambiguities of the PCA-
based canonical poses, showing that it has not been
fully addressed in recent works.

• We demonstrate the actual ability of PCA-based canon-
ical poses by distinct experiments and detailed analysis,
hoping to prompt future works in the context of rotation-
invariant point cloud analysis.

• We propose a pose selector that can effectively disam-
biguate the canonical poses and boost performance.

https://github.com/SILI1994/rotation-invariant-pointcloud-analysis
https://github.com/SILI1994/rotation-invariant-pointcloud-analysis
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2. Related works
In this section, we briefly review the developments of

deep learning techniques on point cloud data as well as the
past efforts on rotation-robust and rotation-invariant deep
point cloud analysis.

2.1. Deep learning on point clouds

Point clouds are difficult for neural networks to handle
due to their irregularity. As solutions, conventional meth-
ods propose to render them to images [5, 23] or conduct
quantization to obtain volumetric grids [14, 18] to facilitate
convolution. However, such approaches either cannot handle
tasks, such as segmentation, that require point-wise label-
ing, or generalize poorly to dense point clouds due to high
memory consumption.

Some recent research explores inputting point clouds di-
rectly to networks. Pioneered by PointNet [17], which uses
point-wise convolution followed by a max-pooling layer to
achieve permutation-invariant representations, the following
works explore aggregating local information to boost perfor-
mance. For example, DGCNN [30] employs graph convolu-
tion by mapping point clouds to k-nearest-neighbor graphs.
PointConv [31] propose to approximate the convolution ker-
nel with a multi-layer perceptron network. KPConv [25] uses
a set of kernel points to define the convolution area. How-
ever, all these methods assume intra-category point clouds
to be already aligned to the same pose, without which the
performance would decline significantly.

2.2. Rotation-robust point cloud analysis

Some works aim at robustifying the networks w.r.t. ran-
domly rotated point clouds. The primary philosophy lies
in designing modules that are equivariant to rotations. For
example, the pioneering work of Esteves et al. [6] propose to
map the point clouds into spherical functions and introduces
a spherical convolution operator equivariant to rotations.
SFCNN [20] replaces the manually designed mapping with a
trainable neural network to learn to project the point clouds
onto discretized spheres. Spezialetti et al. [22] propose a
self-supervised strategy to learn canonical poses via spher-
ical convolution. Shen et al. [21] define a transformation
that maps both the inputs and the intermediate-layer fea-
tures into unit quaternions to realize rotational equivariance.
RotPredictor [7] proposes to transform the Cartesian coor-
dinate system into a cylindrical one, on which rotations are
represented as translations. Consequently, rotational equiv-
ariance can be achieved due to the translation-equivariant
property of convolutional neural networks [31]. Although
these works present significant robustness w.r.t. rotations,
they are still not strictly rotation-invariant. Moreover, since
most approaches in this thread require test-time augmenta-
tion (a.k.a., voting) and such augmentations are often con-
ducted by randomly sampling rotations from SO(3), their

performances are not entirely stable and heavily depend on
the sampling efficiency.

2.3. Rotation-invariant point cloud analysis

Another thread of works explores achieving strict rota-
tional invariance. For example, SPH-Net [16] proposes to
extend the point clouds to volumetric functions and designs
a rotation-invariant convolution kernel based on spherical
harmonics. Its expression ability is, however, limited due to
the calculation of feature norms. There also exist methods
that focus on handcrafting rotation-invariant features based
on intrinsic geometries. For example, based on the relative
locations, distances, and angles among points, RIConv [36],
Triangle-Net [33], Li et al. [11], and SRI-Net [24] man-
ually design different forms of rotation-invariant features
and propose their respective network structures. Despite
the well-designed networks, these handcrafted geometric
features inevitably lead to information loss.

On the other hand, some approaches propose to convert
rotated point clouds to their PCA-based canonical poses to
achieve rotational invariance. Compared to the feature-based
methods, these canonical poses can ultimately preserve the
shape information of the input point clouds. For example,
Fujiwara and Hashimoto [8] leverage the distance field to dis-
ambiguate the signs of canonical poses and concatenate them
to formulate the inputs. Xiao et al. [34] and Yu et al. [35]
claim that there are 8 sign ambiguities of the canonical poses
and employ trainable attention-based selection modules for
disambiguation. Kim et al. [10] propose to conduct PCA
from local patches to the entire point clouds. Zhao et al. [37]
combine the canonical poses with handcrafted features to
formulate the inputs. In summary, although these works have
developed varying network structures to suit the canonical
poses better, the associated ambiguity problem is unfortu-
nately not clearly studied.

3. Ambiguities of the canonical pose
In this section, we explore the exact number of ambigui-

ties of the PCA-based canonical poses. To make the paper
self-contained, we first briefly review how the canonical pose
is calculated. Specifically, for a given point cloud P ∈ Rn×3,
PCA is performed by:∑(

Pi − P̄
) (

Pi − P̄
)T

n
= EΛET , (1)

where Pi ∈ R3 is the ith point of P, P̄ ∈ R3 is the
center of P, E is the eigenvector matrix composed of
eigenvectors (e1, e2, e3) (a.k.a., principal axes), and Λ =
diag (λ1, λ2, λ3) are the corresponding eigenvalues (a.k.a.,
principal values). By aligning the principal axes to the three
axes of the world coordinate, we obtain the canonical pose
as Pcan = PE. The rotation-invariant property of Pcan can
be facilely derived as follows:
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Figure 1: A conceptual explanation of improper rotation,
which consists of: 1) rotation along an axis; 2) reflection
along the plane perpendicular to this axis. Pure planar reflec-
tion can be considered as a special case of improper rotation
where the rotation stage vanishes.

Proof. By applying a random rotation matrix R ∈ SO(3)
on the point cloud P, we can obtain its rotated version PRT .
In the same manner as shown in Eq. (1), we can conduct
PCA on it in the form of∑(

RPi −RP̄
) (

RPi −RP̄
)T

n

=R

(∑(
Pi − P̄

) (
Pi − P̄

)T
n

)
RT

=(RE)Λ (RE)
T
,

(2)

where RE becomes the new principal axes. Therefore, as
mentioned above, the canonical pose can be computed as(

PRT
)
can

= PRT ·RE = PE, (3)

on which the rotation R has no effect.

3.1. Sign Ambiguity

As pointed out by some previous works [8, 34, 35], the
PCA-based canonical pose contains sign ambiguities. Specif-
ically, for a certain eigenvector e, both +e and−e can satisfy
the rule of eigen-decompositions. Consequently, by assign-
ing different signs to each of the three eigenvectors, there
are 8 possible poses when calculating the canonical pose of
a given point cloud.

While this ambiguity problem is ignored in some existing
works [10, 37], it is also explicitly pointed out and handled
via trainable modules [34, 35] or analytical methods [8].
However, we argue that this 8-ambiguity declaration con-
tains non-rotational transformations. In detail, assume that
a specific combination of eigenvectors E = [e1, e2, e3] is
with determinant 1. Consequently, only 4 out of the 8 ambi-
guities are with determinant 1, representing rotations, and
the others are with −1, characterizing improper rotations
(i.e., the combination of rotation and reflection, as illustrated
in Fig. 1). A detailed justification is presented in Table 1.

Determinant Geometric meaning
[+e1,+e2,+e3] 1 Rotation
[−e1,−e2,+e3] 1 Rotation
[+e1,−e2,−e3] 1 Rotation
[−e1,+e2,−e3] 1 Rotation
[−e1,+e2,+e3] −1 Improper rotation
[+e1,−e2,+e3] −1 Improper rotation
[+e1,+e2,−e3] −1 Improper rotation
[−e1,−e2,−e3] −1 Improper rotation

Table 1: Determinants and geometric meanings of the eigen-
vector matrix w.r.t. different assignment of signs.

3.2. Order ambiguity

The aforementioned claim of 8 ambiguities is also insuf-
ficient. Specifically, this claim takes for granted that the
eigenvectors are sorted according to some rules (e.g., by
arranging the eigenvectors in the same order w.r.t. ascend-
ing/descending eigenvalues). However, we argue that such
sorting rules are just manually defined for convenience. I.e.,
there is no mathematical support for taking the eigenvec-
tor corresponding to the largest/smallest eigenvalue as the
x-axis and the smallest/largest one as the z-axis. As we
will show later in Sec. 6.2, this sorting-dependent order in
fact obviously hinders the performances for aligning intra-
category objects to different poses. Consequently, apart from
the sign ambiguities, we claim that there also exist 6 order
ambiguities by permuting the 3 eigenvectors.

By summarizing the above discussions of ambiguities
together, we can conclude that there in fact should be

4 (sign ambiguities)× 6 (order ambiguities) = 24

ambiguities in total speaking of the PCA-based canonical
poses of point clouds. A detailed visualization can be found
in the supplementary material.

4. Pose selector: Learning to disambiguate the
canonical poses

In this section, we propose a novel function to cope
with the ambiguities, which can effectively boost the perfor-
mances of point cloud analysis tasks.

A straightforward strategy to incorporate the aforemen-
tioned ambiguities for rotation-invariant analysis is to con-
sider every possible pose as an independent training instance,
so that the network would learn to associate each possible
pose to the label of the corresponding shape. Although this
strategy works well, as we will show in the following sec-
tions, it is more effective to let the model learn to select the
optimal canonical pose by incorporate pose selection into the
training process. To this end, we design a trainable module
to learn to use the 24 poses.
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Figure 2: Structure of the pose selector, which predicts the
weights of the 24-dimensional inputs. We implement the
module with 256-512 1D convolutional filters followed by
max-pooling, 24-dimensional linear mapping, and softmax.

We denote this module as “pose selector.” As illustrated
in Fig. 2, it is a lightweight trainable network that can be in-
corporated into any network developed for point cloud anal-
ysis. Specifically, by flattening the point cloud P ∈ Rn×3 to
a vector and concatenating all the 24 ambiguities together,
we obtain a 3n×24 representation of all the canonical poses.
Pose selector then takes this representation as input and
axis-wise converts it into high dimensional features, which
are pooled among the 3n dimensions to reach a single fea-
ture vector. This feature is further linearly mapped back
to 24 dimensions and activated by softmax, resulting in a
24-dimensional weight vector w. To obtain the selected
point cloud Psel ∈ Rn×3 in the optimal pose, we take the
weighted sum:

Psel =

24∑
d=1

wdPd , (4)

where wd and Pd are the weight and corresponding canoni-
cal pose, respectively.

There remain ambiguities in the orders of the 24 poses
during concatenation (i.e., 24! possible orders for concatena-
tion). However, owing to the closedness of SO(3), we can
always generate the remaining 23 poses in a deterministic
manner from an arbitrary canonical pose. Therefore, the
order ambiguity that arises from concatenation can in fact
be reduced to 24.

5. Performance study by using the correctly
identified ambiguities

We claim that the proper identification of ambiguities can
lead to more significant accuracy enhancements than well-
designed networks or handcrafted rotation-invariant features.
For verification, we conduct experiments on popularly used
classification and segmentation benchmarks to compare with
the performance of related works.

5.1. Implementation details

We employ the well-known DGCNN [30] network struc-
ture (with the spatial transformer network [9]) as our back-
bone without any modification. All the hyper-parameters and
training setups remain the same as suggested in [30], except
that the initial learning rate of the SGD optimizer is reduced
from 0.1 to 0.01 for faster convergence and fine-tuning pur-
pose. In the training phase, we randomly sample from all
the possible 24! different concatenation patterns to robustify
the model. For testing, we report two kinds of results: with
and without test-time augmentation (TTA), which takes all
the 24 concatenation patterns generated along a specific root
as inputs and uses their mean value as the final prediction.

For experimental setup, we follow the related works [11,
24, 35, 36] and compare different algorithms in 3 modes:

• Both training and testing sets are rotated around the
z-axis: z/z.

• Training set is rotated around the z-axis and testing set
is randomly rotated: z/SO(3).

• Both training and testing sets are randomly rotated:
SO(3)/SO(3).

In our implementation, rotation matrices are randomly sam-
pled with the special ortho group function of Scipy [29].

5.2. Object classification

We first carry out comparisons on the synthetic Model-
Net40 dataset [32], which consists of 12311 meshes from
40 categories with 9843 for training and 2468 for testing. In
practice, we use the data released by Qi et al. [17], where
the point clouds are already pre-processed.

We employ both rotation-robust and rotation-invariant
approaches for comparison. Peer methods characterized as
rotation-robust all aim to learn rotation-equivariant repre-
sentations by converting the Cartesian coordinates to either
spherical or cylindrical ones. For the rotation-invariant coun-
terparts, they mainly use the PCA-based canonical poses [10]
or handcrafted geometric features [11, 24, 33, 36], or both
of them [35, 37] as the inputs. Within our knowledge, LGR-
Net [37] is currently the most competitive algorithm that
leads the scoreboards of various tasks.

The results are presented in Table 2. As shown, it is facile
to champion the accuracy providing correctly identified am-
biguities. Among the peer algorithms, RI-GCN (xyz only) is
especially meaningful in comparison since it also uses the
PCA-based canonical poses as inputs and develops power-
ful networks to better aggregate local features. However, it
did not address the ambiguity problem, resulting in a lower
accuracy than our method.



Method Inputs z/z z/SO(3) SO(3)/SO(3) Acc. drop

Rotation-sensitive

PointNet [17] xyz 88.5 16.4 70.5 54.1
DGCNN [30] xyz 92.2 20.6 81.1 60.5

PointNet++ [19] xyz 89.3 28.6 85.0 56.4
PointConv [31] xyz 91.6 - 85.6 -

Rotation-robust

Shen et al. [21] xyz 83.0 83.0 83.0 0.0
Spherical CNN [6] voxel 88.9 76.9 86.9 10.0
a3SCNN [13] voxel 89.6 87.9 88.7 0.8
SFCNN [20] xyz 91.4 84.8 90.1 5.3
SFCNN [20] xyz + normal 92.392.392.3 85.3 91.0 5.7

RotPredictor [7] xyz 92.1 - 90.8 -

Rotation-invariant

RIConv [36] feature 86.5 86.4 86.4 0.0
Triangle-Net [33] feature - - 86.7 -

SRI-Net [24] feature 87.0 87.0 87.0 0.0
SPH-Net [16] xyz 87.7 86.6 87.6 1.0
Yu et al. [35] xyz + feature 89.2 89.2 89.2 0.0
Li et al. [11] feature 89.4 89.4 89.3 0.1
RI-GCN [10] xyz 89.5 89.5 89.5 0.0
RI-GCN [10] xyz + normal 91.0 91.0 91.0 0.0
LGR-Net [37] xyz + normal + feature 90.9 90.9 91.1 0.2

Ours (w/o TTA) xyz 90.2 90.2 90.2 0.0
Ours (w/ TTA) xyz 91.6 91.691.691.6 91.691.691.6 0.0

Table 2: Classification accuracy (%) on the ModelNet40 dataset. Point clouds for all the methods are with density 1024. Within
the inputs column, xyz denotes the Cartesian coordinates of the point clouds and features stand for handcrafted geometric
features. The last column records the differences between z/SO(3) and SO(3)/SO(3).

5.3. Object part segmentation

We also evaluate different methods on the part segmen-
tation task, which aims to predict point-wise segmentation
labels for the input point clouds. For experimental setup,
we employ the ShapeNet part segmentation dataset [2] for
benchmarking and use the pre-processed data released by
Qi et al. [17], which consists of 16881 point clouds from
16 categories partitioned with 50 part labels in total. We
follow the standard train-test split with 14007 objects for
training and 2874 for testing. The experiments are again
conducted in 3 modes as mentioned above. For evaluation,
we calculate the mean intersection of union (mIoU, %) for
each shape and report the mean value over all instances as
the final results. The per-category mIoU is presented in the
supplemental material for interested readers.

Table 3 presents the results. Some of the methods men-
tioned in the classification experiments are omitted since
their networks are not modified for the segmentation task in
their respective proposals. We emphasize that the enhance-
ment over LGR-Net is achieved without including normals
and geometric features in the input as it does. In fact, such
complementary inputs are known to boost the performances
(i.e., as shown in Table 2, even just adding normals can lead
to approximately 1% enhancements for both SFCNN and
RI-GCN). Moreover, by comparing the performances on

both classification and segmentation tasks, we can observe
that the abilities of some specifically designed features and
network structures [10, 11] are not very consistent among
different point cloud analysis tasks, showing as the competi-
tive performances on a particular application but limit results
on the other one.

5.4. Classification on real-world dataset

A major concern of applying PCA to real-world point
clouds lies in its sensitiveness w.r.t. various nuisances such
as noise, incompleteness, and deformations. Therefore, in
this section, we study how the PCA-based canonical poses
perform in such scenarios. For experimental setup, we fol-
low LGR-Net [37] and employ the OBJ BG dataset from
ScanObjectNN [28], which contains scans of 2890 indoor
objects classified into 15 categories with 2312 for training
and 578 for testing2. All objects are manually registered to
the closest poses w.r.t. their CAD models, leading to anal-
ogously the same pose within each category. In general,
this dataset is much more challenging than the synthetic
ModelNet40 for containing noise, holes, deformations, and
backgrounds.

We report the results in Table 4. Compared to LGR-Net,

2The author-released dataset contains 2890 point clouds although it is
claimed as 2902 in [28].



Method Inputs z/SO(3) SO(3)/SO(3) Drop of mIoU

Rotation-sensitive

PointCNN [12] xyz 34.7 71.4 36.7
DGCNN [30] xyz 37.4 73.3 35.9
PointNet [17] xyz 37.8 74.4 36.6

PointNet++ [19] xyz 48.2 76.7 28.5

Rotation-robust &
invariant

Triangle-Net [33] feature - 72.5 -
RIConv [36] feature 75.3 75.5 0.2
RI-GCN [10] xyz 77.2 77.3 0.1
SRI-Net [24] feature 80.0 80.0 0.0
Li et al. [11] feature 82.2 82.5 0.3

LGR-Net [37] xyz + normal + feature - 82.8 -
Ours (w/o TTA) xyz 81.7 81.7 0.0
Ours (w/ TTA) xyz 83.183.183.1 83.183.183.1 0.0

Table 3: Mean IoU (%) over all instances on ShapeNet. The inputs of each algorithm are the same as mentioned in Table 2.
All point clouds are with density 2048 except for RI-GCN [10] and Triangle-Net [33], whose inputs are with density 1024.

z∗/z∗ z∗/SO(3) SO(3)/SO(3)
PointNet [17] 79.4 16.7 54.7

PointNet++ [19] 87.8 15.0 47.4
PointCNN [12] 89.989.989.9 14.6 63.7
DGCNN [30] 87.3 17.7 71.8
RIConv [36] - 78.4 78.1

LGR-Net [37] - 81.2 81.4
Ours (w/o TTA) 84.3 84.3 84.3
Ours (w/ TTA) 86.7 86.786.786.7 86.786.786.7

Table 4: Classification accuracy (%) on the real-world
ScanObjectNN dataset. z∗ denotes the original pre-aligned
dataset without any rotations. All point clouds are with den-
sity 1024. Our approach can noticeably outperform LGR-
Net, which is the best peer method on synthetic datasets.

which is the best peer method on both ModelNet40 and
ShapeNet, our method presents a noticeable outperformance
on the challenging real-world dataset (i.e., 5.3% enhance-
ment in accuracy). This result indicates that the PCA-based
canonical poses with properly identified ambiguities are in
fact more effective than some handcrafted features and re-
lated network structures. Furthermore, by comparing the
results under the z/z setup, we can observe that the result
presented by PCA-based canonical poses is only slightly
worse than the one obtained with the manual alignment,
demonstrating the robustness of PCA-based canonical forms
w.r.t. various nuisances in the real world.

5.5. Ablation study of the pose selector

In this section, we study the effectiveness of our proposed
pose selector module. For comparison, in the training phase,
we randomly select 1 from the 24 ambiguities and insert it
into the vanilla DGCNN network. For testing, we conduct
TTA over all the ambiguities. Experiments are carried out

ModelNet40 ShapeNet
w/o pose selector 91.3 82.8
w/ pose selector 91.6 83.1

Table 5: Pose selector can increase the accuracy of different
tasks compared to the vanilla network, demonstrating its
effectiveness in disambiguating the canonical poses.

on both classification and segmentation tasks for clear com-
parison. Results are reported in Table 5. As shown, our pose
selector can effectively enhance the performance on different
tasks by merging the information of all the possible canon-
ical poses. Furthermore, we observe that the pose selector
can also accelerate the convergence compared to using the
vanilla DGCNN network.

6. Further explorations regarding the PCA-
based canonical poses

Despite its effectiveness, the capacities of PCA-based
canonical poses are not clearly studied. Therefore, we desire
to explore the following questions with the hope to prompt
future research in the context of rotation-invariance point
cloud analysis:

• How well can the PCA-based canonical poses perform?

• Can we reduce the number of ambiguities in the light
of disambiguation methods?

• To what extent do the inaccurate ambiguities hinder the
performance?

• What does PCA conduct on the point clouds? In what
conditions does it perform the best?



Pre-aligned
pose

Selected
canonical pose

All possible
canonical poses

Acc. 92.9 92.0 91.6
mIoU 85.2 84.7 83.1

Table 6: Classification accuracy on ModelNet40 and mIoU
(%) on ShapeNet w.r.t. different input pose on the classifica-
tion and part segmentation tasks. Results from left to right
are obtained with: the original datasets; manually selected
canonical pose via Eq. (5); and all the 24 ambiguities.

All the experiments mentioned hereafter are with exactly the
same setup as mentioned in Sec. 5. TTA is conducted for
all the experiments containing ambiguities. For experiments
that do not contain ambiguities, we switch to use the vanilla
DGCNN without the pose selector.

6.1. How well can the canonical poses perform?

Regardless of the ambiguity problem, PCA also cannot
perfectly align intra-category objects to the same canonical
pose due to their varying shapes. Consequently, some exist-
ing works [7, 10, 35, 37] consider these imperfect alignments
as the primary reason that hampers the performance when
canonical poses are used for rotation-invariant point cloud
analysis. However, we argue that such a declaration is biased
due to the improperly identified ambiguities.

In this section, we test the maximum capability of the
canonical poses. Specifically, we desire to explore how well
the canonical poses can perform if the ambiguity problem is
ideally solved. For experimental setup, we manually select
1 pose from the 24 ambiguities to make the poses of intra-
category objects as similar as possible. In the implementa-
tion, since the original point clouds within the ModelNet40
dataset are already precisely aligned, we use them as refer-
ence and select 1 from all the 24 possible canonical poses
that minimizes the rotational residual:

Pselected = argmin
P∈A

‖RP − I‖F , (5)

where A consists of the 24 canonical poses, RP is the rel-
ative rotation from the current candidate canonical pose P
to the reference calculated by the method of Umeyama [27],
and I is the 3D identity matrix.

We conduct experiments on both classification and part
segmentation tasks to extensively demonstrate the potential
of the PCA-based canonical poses. Results are reported
in Table 6. As presented, both classification and segmenta-
tion accuracies can be further enhanced if the ambiguities
are ideally handled. For the segmentation task, the accuracy
even approaches the full capacity of the network structure.
Consequently, we can conclude that contrary to the common
blame on the imperfect alignment, it is in fact the incorrect
number of ambiguities that primarily lowers the accuracy.

Figure 3: Disambiguation methods may assign objects
within the same category to different poses.

Strat.
I

Strat.
II

Strat.
III

All possible
canonical poses

Acc. (%) 89.5 90.3 87.2 91.6

Table 7: Classification accuracy (%) w.r.t. distinct disam-
biguation strategies on ModelNet40. The number of ambi-
guities from left to right are 4, 6, 0, 24, respectively.

6.2. Can disambiguation methods help?

Although the ambiguity cannot be addressed mathemati-
cally, there do exist some conventions on disambiguation. In
this section, we explore whether these methods can benefit
point cloud analysis tasks. Specifically, we conduct experi-
ments with 3 disambiguation strategies:

• Strategy I: Determine the order of eigenvectors by sort-
ing the corresponding eigenvalues in ascending order.
This operation reduces the number of ambiguities to 4.

• Strategy II: Determine the sign of eigenvectors by let-
ting more data lie on the positive half-axes. This strat-
egy states that the principal axes should keep the same
signs with the majority of the data vectors [1, 26]. Ac-
cordingly, the number of ambiguities is reduced to 6.

• Strategy III: Combine the aforementioned Strategies I
and II together to eliminate all the ambiguities.

As shown in Table 7, these disambiguation methods are
unideal for point cloud analysis tasks, as there is a noticeable
drop in accuracy compared to the case where all the ambi-
guities are considered. This is because objects within the
same category may still lie in different poses after such dis-
ambiguation procedures. A detailed illustration is presented
in Fig. 3, where poses are obtained with Strategy III.

6.3. Do inaccurate ambiguities have any effect?

We use Strategy I from Sec. 6.2 to determine the order
of eigenvectors and assign all the 8 possible combinations
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Figure 4: Conceptual illustrations of the PCA-based align-
ments on non-symmetric objects. Planes characterize the
three principal axes detected by PCA.
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Figure 5: A point cloud can be denoted as x+dn and x−dn
given known symmetry.

of signs to it. By doing so, we obtain an accuracy of 89.2%,
which is 2.4% lower than the one obtained with correctly
identified ambiguities. Moreover, this result is also worse
than the one obtained with correct but insufficient 4 sign
ambiguities (Strategy I of Table 7), demonstrating that the
incorrectly identified ambiguities do harm the performance.

6.4. When does PCA perform the best?

We claim that PCA is effective for aligning objects that
contain orthogonal plane-reflective symmetries. Specifically,
for a symmetric object with orthogonal reflection planes,
(part of) its principal axes would always be parallel to the
normals of these planes [3, 15]. As simple proof, let us
assume that a given centralized point cloud P is symmetric
along a plane with unit normal n. Then, as shown in Fig. 5,
we can denote each pair of symmetric points as x + dn and
x− dn, where x belongs to the reflection plane and d is the
point-to-plane distance. Thus the covariance matrix of P
can be calculated as:

C =
∑
i

(xi + din) (xi + din)
T
+ (xi − din) (xi − din)T

=
∑
i

xix
T
i + 2d2innT . (6)

By multiplying n on both side of Eq. (6), we can obtain
the following formulation with the property that x is always
perpendicular to n:

Cn =

(∑
i

xix
T
i + 2d2innT

)
n = 2

∑
i

d2in, (7)

which is an eigen-problem identical to the one in PCA.
Since Eq. (7) holds for all reflection planes, a point cloud

with more than 2 orthogonal plane-reflections would have
its principal axes uniquely determined up to the 24 sign and
order ambiguities. Therefore, it is facile for PCA to perform
excellent intra-class alignment on objects that consist of or-
thogonal plane-symmetries, such as desks, tables, and bath-
tubs. Owing to their man-made properties, these alignments
are often presented as upright on the tabletop. Moreover,
we observe that PCA can still achieve acceptable alignment
on objects where the symmetries are only approximately
satisfied, such as guitars, cups, and cars. However, this does
not imply PCA would fail if orthogonal symmetries do not
exist. As shown in the top row of Fig. 4, intra-class objects
can still be aligned to similar poses owing to their similar
structures. However, the alignments would be arbitrary if the
intra-class shapes are not even similar in structure, as shown
in the bottom row of Fig. 4, the aligned poses of the stairs
are random due to their completely different structures.

7. Discussion and conclusions

This work explores the identification of proper pose ambi-
guities and its effects when PCA is used to achieve rotation-
invariant point cloud analysis. A pose selector module is
also developed for disambiguation. Although many efforts
had been spent on developing powerful network structures
or handcrafting descriptive features to complement the PCA-
based canonical poses, our experiments indicate that it is
the correctly identified ambiguities that can lead to more
significant performance boosts, evident from the noticeable
accuracy enhancements on various datasets.

We hope our analyses can prompt further rethinking and
future network designs regarding rotation-invariant point
cloud analysis. For example, we plan to study whether a
more effective disambiguation module can be developed.
Another thread of work lies in achieving more precise align-
ments by robustifying the vanilla PCA.
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