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Abstract

We introduce a fiducial marker for the registration

of two-dimensional (2D) images and untextured three-

dimensional (3D) shapes that are recorded by commodity

laser scanners. Specifically, we design a 3D-version of the

ArUco marker that retains exactly the same appearance as

its 2D counterpart from any viewpoint above the marker but

contains shape information. The shape-coded ArUco can

naturally work with off-the-shelf ArUco marker detectors in

the 2D image domain. For the 3D domain, we develop a

method for detecting the marker in an untextured 3D point

cloud. Experiments demonstrate accurate 2D-3D registra-

tion using our shape-coded ArUco markers in comparison

to baseline methods.

1. Introduction

Registration of two-dimensional (2D) images and three-

dimensional (3D) shapes is an essential problem in com-

puter vision. While 3D scanners are becoming widely avail-

able, many high-resolution laser scanners do not record tex-

ture information1. For texturing the untextured 3D shapes,

accurate registration of 2D images and 3D shapes is needed.

However, in general, such cross-modality registration is dif-

ficult due to the lack of features that are common in both

modalities, i.e., images and point clouds.

In this work, instead of estimating the 2D-3D correspon-

dences, we propose to actively define feature points that

both 2D and 3D sensors can reliably detect. To achieve this

goal, we propose a shape-coded ArUco marker whose 2D

appearance is exactly the same as ordinary 2D ArUco from

any viewpoint but contains shape information that can be

detected by 3D sensors (Fig. 1). The shape-coded ArUco

thus can naturally work with off-the-shelf 2D ArUco de-

tectors in the 2D image domain. For the 3D domain, we

develop a method for detecting and localizing the markers

in a recorded 3D point cloud based on a hybrid approach of

1E.g., HandySCAN 3D, https://www.creaform3d.com/en/

portable-3d-scanner-handyscan-3d, last accessed on August

17, 2021.

Figure 1: Our shape-coded markers give accurate 2D-3D

correspondences by their embossed shape without changing

the appearance on 2D images. Our method can be extended

to any 2D fiducial marker.

point cloud processing and 2D marker detection.

To ensure the property of retaining the same appearance

as the 2D ArUco markers from any viewpoint, we study the

possible 3D deformations of the original 2D ArUco mark-

ers. We show that the embossing deformation satisfies the

property, which can be used to encode the shape informa-

tion to the marker, as shown in Figure 1.

We fabricated the shape-coded ArUco and assessed its

effectiveness using both synthetic and real-world datasets.

Experimental results show a higher registration accuracy in

comparison to the state-of-the-art method that is based on

a 2D planar marker board [19]. We provide 3D models,

fabrication instruction, and the marker detector code for the

shape-coded ArUco in the project page2.

Contributions. The chief contributions of this work are:

• We introduce a practical fiducial marker for bridging

2D and 3D modalities, resulting in highly accurate 2D-

3D registration for mapping colors on untextured 3D

models.

• We study the class of deformations that retains the

same 2D appearance of the original 2D markers while

having the shape information that can be decoded by

3D scanners.

2https://github.com/lilika-makabe/

shape-coded-aruco



• We demonstrate the effectiveness of the shape-coded

ArUco markers in the application of color mapping on

untextured 3D scans.

2. Related work

Our goal is to develop a fiducial marker for 2D-3D reg-

istration tasks, where texture information is unavailable in

3D data. We first briefly recap common methods relying on

the texture information on 3D shapes, and then categorize

the 2D-3D registration methods designed for untextured 3D

models that work with/without fiducial markers.

When the texture information on 3D shapes is available,

the 2D-3D registration problem is commonly achieved by

finding the 2D-3D correspondences based on the texture. A

straightforward approach is to solve the perspective-n-point

(PnP) problem from the given correspondences [15] and

is successfully applied for large-scale objects [11]. Some

recent methods use deep neural networks to infer the 6
degrees-of-freedom (DoF) object poses from a textured 3D

shape and image observations [13, 39, 41, 27, 9].

2D-3D registration for untextured 3D shapes is a harder

problem because no obvious common feature points are

available. The previous works for this problem are cate-

gorized into marker-less and marker-based methods.

Marker-less methods. Since the marker is not available

in this setting, previous studies aim at identifying features

from the scene that are geometrically consistent. One of

the major approaches is to assume the correlation between

2D texture and 3D shape features, such as silhouette and

boundaries [21, 23]. Point correspondences [28, 30] and

line/plane correspondences [1, 40, 17, 36] are also known

useful particularly for urban scenes. Gong et al. [7] use

a trihedron in the scene while it requires manual interven-

tion. A recent study [18] uses a deep neural network to

overcome the difficulty of associating cross-modal feature

descriptors. Instead of explicitly finding 2D-3D correspon-

dences, their method turns the problem into a classification

problem about whether the part of the point cloud is visi-

ble or not from the camera. While the marker-less methods

have a merit of not requiring an explicit marker in the scene,

their accuracy is inferior to the marker-based methods [24].

Marker-based methods. The problem of 2D-3D registra-

tion becomes easier when a marker is available. One of the

major approaches is to use planar fiducial markers. Among

them, most methods use the boundaries of the marker board

as the 3D cues, whose relative positions to the 2D markers

are known. For example, Geiger et al. [6] propose to use

checkerboard markers printed on a plane. While most of the

traditional methods [26, 29] require manual selection of the

four corner points of the board from 3D scans, the state-of-

the-art method proposed by Zhou et al. [42] automates the

pipeline by detecting the 3D boundaries of the marker board

and estimates the camera poses by line-to-line correspon-

dences. Some other studies use tailored reference objects,

such as holes [12, 4], spherical target [37, 14], or retrore-

flective target [10]. Another example of the 3D markers is

a cube with marker faces, which are used in augmented re-

ality applications [38]. Along the line of these works, we

propose a simple yet effective shape-coded ArUco marker,

which explicitly provides a 2D-3D correspondence at every

feature point.

3. Shape-coded marker for 2D-3D registration

We design a 3D fiducial marker for 2D-3D registration

that retains the same appearance as the original 2D marker.

To be detectable by 3D scanners, we deform the original 2D

marker to encode the shape information. We first discuss the

required conditions for the deformations that preserve the

same appearance as the 2D markers from any viewpoint.

Hereafter, we call the property a projective invariant ap-

pearance property. We then design a shape-coded version

of ArUco that satisfies the conditions. A similar shape cod-

ing can be applied to any other types of markers that are

akin to ArUco markers.

3.1. Required conditions for marker deformation

Let us assume a planar marker composed of two dis-

tinct colors {c1, c2}. As illustrated in Fig. 2, we use the

3D coordinate system, where the original 2D marker plane

locates on z = 0 and assume that the marker is viewed

from any location in z > 0. For a 2D point coordinate

on the marker p = (px, py), we denote its 3D position us-

ingˆas p̂ = (p, 0). For simplicity of fabrication, we only

consider the deformation of the marker surface along the

z-axis. Thus, the deformation is restricted to a morphism

from the original marker point p̂ = (p, 0) to the deformed

point p̂′ = (p, z(p)), where z(·) denotes the amount of

deformation along z axis for the given 2D point. We fur-

ther assume that the 3D shape of the deformed marker is

piece-wise smooth, and cast/attached shadows do not alter

the binary colors c1 and c2.

We use r to represent a camera ray that passes through

the viewpoint and the point on the marker. Suppose that

a camera ray r intersects the original 2D marker at point

p̂ and that the same camera ray r intersects the deformed

3D marker at point p̂′. The marker has a projective invari-

ant appearance if and only if, for any camera ray from any

viewpoint at z > 0, the color of the deformed marker is the

same as the original 2D marker, i.e.,

c (p̂, r) = c (p̂′, r) , (1)

where c(·) returns the color {c1, c2} at the given 3D point

and camera ray.
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Figure 2: Required conditions to deform planar markers while preserving the projective invariant appearances.
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(a) 2D planar marker (b) Shape-coded marker

Camera ray

Figure 3: Side-view illustrations of (a) 2D planar marker

and (b) our shape-coded marker. White patterns in an orig-

inal 2D marker are on z = 0 plane, and black patterns are

embossed to be distinguishable from 3D scanners. Off-the-

shelf 2D marker detectors work for our marker because our

marker has projective invariant appearances.

Now we describe the conditions of deformations that

preserve the property of projective invariant appearance.

We denote a set of the 2D marker points on the boundary

of two distinct colors Ω ⊂ R
2 and discuss the conditions

for each of 2D marker point p ∈ Ω and p /∈ Ω.

Condition 1 (p ∈ Ω) Marker points on the boundary of

two colors must be located at the original marker plane,

z(p) = 0.

Suppose a 2D marker point p is on the color boundary.

If the original marker point p̂ moves along z axis as illus-

trated in Fig. 2(a), the camera ray r passes through a dif-

ferent marker point p̂′ on the deformed surface. Since the

moved point is no longer on the color boundary after defor-

mations, it indicates that no deformations are allowed for

points on the color boundaries.

Condition 2 (p /∈ Ω) Marker points off the boundary of

two colors must be located on or beneath the original

marker plane, z(p) ≤ 0.

If the deformation toward z(p) > 0 is allowed (see

Fig. 2(b-1)), the color of the original 2D marker point can

vary due to occlusions introduced by the deformation, re-

sulting in c (p̂, r) ̸= c (p̂′, r) that breaks the condition of

Eq. (1). Therefore, the projective invariant appearance can-

not be preserved for deformations toward z(p) > 0.

On the other hand, deformation toward z(p) < 0 is al-

lowed because the same color can always be observed even

after deformations as illustrated in Fig. 2(b-2), maintaining

the projective invariant appearance property. It implies that

the embossing deformation is always allowed for marker

points that are not on the color boundaries.

3.2. Designing shape-coded ArUco marker

Based on the deformation constraints described in

Sec. 3.1, we fabricated a shape-coded ArUco marker [5]

by deforming the original 2D ArUco . In real-world situa-

tions, the top surface casts shadows on the embossed area

that may cause undesirable color variations. To avoid the

issue, we place white regions as the top surface and black

regions embossed because the shadowing effect does not

affect the black appearance. To ease fabrication and detec-

tion, both the top surface (i.e., z = 0) and embossed part

(i.e., z = −ϵ) are made planar, where we set ϵ large enough

to be distinguishable by commercially available 3D scan-

ners. All surfaces except the top surface are colored black,

as visualized in Fig. 3 so that the fabricated marker meets

the above conditions.

For making our marker practical for 2D-3D registration,

we fabricate a marker board where a set of markers placed

surrounding the target object. Figure 1 shows the appear-

ance of the shape-coded ArUco board as well as a target

object located in the middle of the marker board.

4. 2D-3D registration with shape-coded ArUco

In this section, we describe the pipeline of 2D-3D regis-

tration by our shape-coded ArUco marker. Since our mark-

ers have projective invariant appearances, we can directly

use off-the-shelf 2D marker detectors (e.g., implemented
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Figure 4: A 2D-3D registration pipeline using the shape-coded ArUco marker.

in OpenCV) to detect the markers in 2D images. For the

marker detection in the 3D domain, we develop a hybrid

method of point cloud processing and 2D marker detection

as illustrated in Fig. 4.

4.1. Marker detection in 3D point cloud

Given a point cloud from a 3D scanner, we detect 3D

ArUco markers and their corner points as illustrated in

Steps 1±3 of Fig. 4. In these steps, our method converts the

point cloud to a binary image so that existing 2D marker

detectors can be employed. We assume that the background

3D points (i.e., points other than the marker and target ob-

ject) are removed from the input point cloud, which is done

automatically by many commercial 3D scanners when the

target scene is placed on a planar surface, such as a desk.

Given the point cloud, our method first separates the

marker from the target object using a density-based clus-

tering method, DBSCAN [3], as shown in Step 1 of Fig. 4.

Since it is unknown which point cloud corresponds to the

marker until the 2D detector identifies the marker, the fol-

lowing steps are applied to each point cloud cl usters.

For each point cloud X ∈ R
3×d where d is the num-

ber of points, we further segment it into two parts; one is

the top part, and the other is the embossed part as shown

in Step 2 in Fig. 4. To achieve this, we transform the input

point cloud X to the coordinates aligned to its normal di-

rection Xn. We use Principal Component Analysis (PCA)

to obtain a rotation matrix Rn ∈ SO(3) transforming to

the new coordinate system spanned by the principal com-

ponents, Xn = RnX. The third principal component cor-

responds to the normal n of the fitted plane and is aligned

to the z-axis after the rotation. We then apply thresholding

to the z-component of Xn using Otsu’s method [25] so that

the marker point cloud is split into the top (white) Xn(top)

and embossed (black) Xn(emb) parts based on their heights.

In Step 3 of Fig. 4, we project the point cloud to an im-

age plane perpendicular to the normal n via orthographic

projection. The 2 × 4 projection matrix P is computed for

mapping the 3D points onto the 2D image coordinates X2D

as X2D = PX̃n, where ˜ indicates the homogeneous repre-

sentation, such that all points are properly projected inside

the image. In the projected image, the pixels corresponding

to the top part PX̃n(top) are made white, and the rest are set

black (see Step 3 in Fig. 4). We then apply a 2D ArUco de-

tector on the image to obtain the maker identification num-

bers and the corner points of the markers C2D ∈ R
2×c,

where c is the number of detected corners. At this point, the

point cloud is classified as the marker or the target object

based on the number of detected corners c. Generally, zero

marker corners are detected in the target object; therefore,

the procedure stably works by simply regarding the point

cloud with a greater c as the marker point cloud. Once the

corner points are detected on the image, we back project the

2D corner points to the plane of the top surface in the point

cloud to obtain the 3D corner points Cn ∈ R
3×c in the

normal-aligned coordinates. Finally, the 3D corner points

Cn are transformed to the original point cloud coordinates

by Cinit = R⊤
n Cn. We treat the 3D corner points Cinit as

the initial corner points that are subsequently refined.

4.2. 3D corner refinement

Accurate 3D corner detection is a key to accurate 2D-

3D registration. In Step 4 of Fig. 4, given the initial corner

points Cinit, we refine the corner point localization using



a synthetic 3D model of the marker that are used for the

production of the physical marker.

Our method computes the transformation between the

initial 3D corners Cinit and the corresponding synthetic 3D

corners Cgt by solving the Procrustes problem [33]. The

computed transformation is further refined by an iterative

closest point (ICP) method [20] between the input point

cloud and synthetic marker point cloud. With the refined

transformation from the synthetic point cloud to the input

cloud [Rc|tc], the 3D positions of marker corners C are fi-

nally determined as C = [Rc|tc]C̃gt.

4.3. Camera pose estimation

We now have accurate 2D-3D correspondences at the

corner points on the shape-coded markers. Similar to con-

ventional marker-based camera pose estimation, we use an

off-the-shelf linear solver for the PnP problem [2] with cali-

brated camera intrinsics. Using the PnP-based camera pose

as the initial guess, we further refine the estimated pose

by minimizing reprojection errors using the Levenberg-

Marquardt (LM) method [16, 22].

5. Experiments

In this section, we evaluate our shape-coded ArUco us-

ing both synthetic and real-world data.

5.1. Implementation details

We create a shape-coded ArUco marker board that con-

tains 16 square markers as shown in Fig. 1. For both the

real-world and synthetic experiments, the board size is set

to 252×252×9.9mm, where the embossed part is 3.3mm
below the top surface. The marker board is modeled by

Blender and fabricated by a 3D printer3. To avoid ap-

pearance variations caused by reflection and shadowing, we

color the black part with low-reflective black paint, while

the top surface is painted white. We publish the 3D model

and fabrication instructions for our shape-coded ArUco in

the project page.

In the implementation of 2D-3D registration, we

use OpenCV4 for intrinsics calibration as well as 2D

ArUco marker detection. For point cloud processing, we

use Open3D [43]. For solving the PnP problem with refine-

ment using the LM method, we use the implementation in

OpenCV [2]. In the process of DBSCAN clustering, we set

the maximum neighborhood distance between two samples

as 1.5mm and the minimum number of samples in a neigh-

borhood as 100 throughout the experiments.

3HP Jet Fusion 4200, https://www.hp.com/

us-en/printers/3d-printers/products/

multi-jet-fusion-4200.html, last accessed on August 17,

2021.
4OpenCV 4.2.0, https://opencv.org, last accessed on August

17, 2021.

5.2. Baselines

For comparisons, we evaluate a marker-based 2D-3D

registration method as well as a 3D registration method.

2D marker-based method. We compare with a method

by Zhou et al. [42] that uses the line correspondences of

the outer edge of the marker board, which shows the state-

of-the-art accuracy among the 2D marker-based registration

methods. In the synthetic experiment, we use the 2D ver-

sion of our marker for their method for a fair comparison.

For the real-world experiment, since it is difficult to place

the 2D marker at exactly the same position as ours, we use

the same 2D images of the shape-coded marker for both our

method and their method.

We use an implementation of [42] in the Lidar Toolbox

of Matlab. Since this method needs to specify a rough posi-

tion of the marker plane for initialization, we input the posi-

tion of the marker’s top surface estimated by our detection

pipeline. Besides, the solution by this method has an am-

biguity when using square markers; we thus manually dis-

ambiguate by selecting the correct 2D-3D correspondences.

Hereafter, we call their method the 2D marker method.

3D registration method. Although our method is ap-

plicable for a single-view input, if images from multi-

ple views are accessible, another promising approach to

2D-3D registration is to cast the problem to well-studied

3D-3D registration by recovering 3D shape from multiple

view images [35, 34]. We thus evaluate a 3D registra-

tion method for comparison. We create an image-based

3D model by structure-from-motion (SfM) [31] with multi-

view stereo (MVS) [32]. After that, we apply ICP to obtain

the transformation between the MVS-based model to the

scanned 3D model. For ICP, we give the initial transforma-

tion based on manually selected 3D-3D correspondences.

5.3. Evaluation metrics

For synthetic dataset, we assess the errors in relative

camera translation et and rotation eR [radian] with respect

to the ground truth transformation. While the rotation er-

ror eR is computed as the angular error of the camera di-

rection [8], translation error et is calculated as the relative

value to the distance between the marker and camera to be

insusceptible to the scale of the target scene. Given the es-

timated translation vector t and rotation matrix R from the

marker origin to camera, the errors are defined as

et =
∥t− tGT∥2
∥tGT∥2

,

eR = arccos
(

0.5
(

tr
(

R⊤

GTR
)

− 1
))

,

where tGT and RGT denote the ground-truth translation

and rotation, respectively.



Table 1: Overall accuracy of camera pose estimation for synthetic environment.

Relative translation error et Rotation error eR [radian]

Method Input Mean (×10−2) Median (×10−3) SD Mean (×10−1) Median (×10−3) SD

2D marker [42] Single image 4.048 1.220 8.049 6.475 8.098 1.260
Ours Single image 0.07875 0.2545 0.1236 0.01460 0.3233 0.002778

3D registration Multi view 0.3848 3.326 0.2625 0.02165 2.164 0.0005753
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Figure 5: Median errors for different noise levels, with error bars for 25th and 75th percentiles. Our method shows a

performance robust to the different noise levels.

For the real-world dataset, we have no access to the

ground truth transformations. We thus qualitatively as-

sess the accuracy by mapping colors on the untextured 3D

shapes.

5.4. Experiment with synthetic data

In this section, we evaluate our method quantitatively on

a synthetic dataset.

Synthetic environment. We use Blender5 to model and

render the synthetic environment. The input images are

rendered under a point light source, using cameras with

37.85 [degree] vertical field of view. The cameras distribute

uniformly on a spherical cap defined by a polar angle θ and

radius r. We set θ = π/6 and r as three times the length

of one side of the marker board and define 50 viewpoints

in the spherical cap. To evaluate the accuracy of camera

localization, only the marker board is placed in the scene.

Results. Table 1 summarizes the results for synthetic and

noise-free environment. We report the mean, median,

and the standard deviation (SD) of the evaluation metrics

{et, eR} calculated from 50 viewpoints. For the meth-

ods taking a single image as input (2D marker [42] and

Ours), the camera poses are estimated independently for

each view. For the 3D registration method, we use all 50
images to reconstruct the marker 3D shape and estimate

5Blender 2.83 LTS, https://www.blender.org, last accessed

on August 17, 2021.

the camera poses. Our method yields higher accuracies for

both camera translation et and rotation eR in comparison to

the 2D marker method [42]. The main difference between

the 2D marker method and ours is that our marker board

yields a larger number of point correspondences, while the

2D marker method only acquires four-line correspondences.

We can also see that our single-view method achieves a bet-

ter estimation than the multi-view 3D registration method

that uses 50 images for the camera pose estimation.

To assess the robustness of the methods against noise in

point clouds, we add Gaussian noise with varying standard

deviations to the point clouds. Figure 5 shows the transla-

tion and rotation errors, et and eR, for different noise levels.

We found the 2D marker method produced large mean er-

rors even for a small noise level. Therefore, to eliminate

the effect of outliers, we show the median errors as well as

error bars indicating 25th and 75th percentiles in the fig-

ure. Besides, to observe the absolute breakdown point of

our method for the shape-coded marker, we also show the

absolute translation error calculated by ∥t − tGT∥2. Over-

all, our shape-coded ArUco marker achieved accurate and

stable estimates of camera poses. When the standard devia-

tion of noise exceeds 1.3mm, our method starts to break

down due to misdetection of the marker from the point

cloud. Still, our method is useful with many recent com-

mercial laser scanners because even the casual ones6 usu-

ally achieve < 0.3mm accuracy.

6E.g., Phiz 3D Scanner, https://www.kiri-innov.com/

products/phiz-3d-scanner, last accessed on August 17, 2021.
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Figure 6: Color mapping results using real-world data (best viewed with color). The first column shows the target objects

used in the experiment, and the second to fourth columns visualize the color mapping results by each method. The 2D marker

method produces a larger misalignment (e.g., around the star in HOUSE). Our single-image method yields visually plausible

alignment, which is comparable with the 3D registration method using multi-view input and manual intervention.

5.5. Real-world experiment

We here show the qualitative results for the color map-

ping using our shape-coded ArUco for real-world data.

Settings. We put the marker and target object on a desk

and capture approximately 50 images with a similar setting

as in synthetic experiments. We calibrate the intrinsics of

the camera using ChArUco7 board beforehand. The dis-

tance between the object and camera is set approximately

60 cm. Untextured 3D shapes are acquired by a handy laser

scanner, HandySCAN 3D8. Using the camera poses esti-

mated by each method, we use MeshLab9 to map the 2D

textures on the untextured 3D shapes.

7ChArUco, https://calib.io, last accessed on August 17, 2021.
8HandySCAN 3D, https://www.creaform3d.com/en/

portable-3d-scanner-handyscan-3d, last accessed on August

17, 2021.
9Meshlab 2021.05, https://www.meshlab.net, last accessed

on August 17, 2021.

Results. Figure 6 shows the real-world examples of

color mapping from a single image by our shape-coded

ArUco marker for four objects: CAKE, RUBIC, HOUSE,

and CAR. As shown in the close-up views in Fig. 6, the

results by the 2D marker method exhibit larger misalign-

ment than ours, typically observed in the star on the roof in

HOUSE, the yellow block on CAR, and the boundary of the

whipped cream on the CAKE. The 3D registration method

yields visually plausible alignment similar to ours, while the

3D method uses all (approximately 50) input images and in-

volves the manual selection of initial correspondences.

To analyze the source of the alignment errors, we show

the close-up views around the corner points of the marker

board in Fig. 7. The 2D marker method produces a larger

misalignment, although it uses the feature correspondences

at the marker board boundaries. This result implies the in-

stability of the 2D marker method that only uses a small

number of correspondences.



Table 2: Comparison of relative errors in 3D corner detection e3D.

3D corner detection error e3D [mm]

Method Mean (×10−3) Median (×10−3) SD (×10−1)

2D marker [42] 4.654 4.663 1.403
Ours w/o refinement 0.6148 0.6015 0.2173
Ours w/ refinement 0.002447 0.002435 0.001011

Table 3: Comparison of marker detection accu-

racy in 2D images.

Reprojection error [px]

Method Mean Median SD

2D ArUco 5.602 5.195 1.234
Shape-coded ArUco 6.000 5.884 0.6682
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Figure 7: Color mapping results on the marker board.

5.6. Corner detection accuracy

To assess our 3D marker detection method, we assess

the 3D corner detection accuracy using the synthetic envi-

ronment. We here compare our method with and without

the 3D corner refinement described in Sec. 4.2 as well as

the 2D marker method [42]. Let us denote the ground truth

corner point of a marker as cgt ∈ R
3, the corresponding 3D

corner estimate as c ∈ R
3, and the estimated transformation

from the ground-truth marker coordinates to the point cloud

coordinates as [Rc|tc]. We evaluate the Euclidean distance

between the corner points normalized by the length of one

side of the square marker board tm as

e3D =
∥c− (Rccgt + tc)∥2

tm
.

Table 2 summarizes the mean, median, and the standard de-

viation of the errors in 3D corner detection for 50 view-

points. Compared with the 2D marker method, our method

yields better 3D correspondences even without refinement,

thanks to the larger number of correspondences. Besides,

the ICP-based refinement process greatly contributes the ac-

curate corner detection.

5.7. Effect of marker deformation for 2D detector

The key of our shape-coded ArUco is its projective in-

variant appearance property. To assess the effect of the

shape deformation to the 2D marker detection, we compare

the accuracy of the 2D marker detector for 2D and shape-

coded ArUco markers in the real-world environment. We

use the same pattern and size for both markers, where the

2D marker is printed on matte flat paper. We switch the

markers by placing them at approximately the same position

while we fix the camera and lighting conditions during the

recording. We recorded the images both indoor with ambi-

ent light and under sunlight to assess the accuracy variations

due to environments.

Table 3 summarizes the mean, median, and standard de-

viation of the reprojection errors, computed from 54 iter-

ations of the capturing processes by changing the camera

location. We use Canon EOS 5D Mark IV camera with the

image resolution 6720×4480 pixels and the lens with focal

length 35mm. Our shape-encoded ArUco yields a compa-

rable accuracy with the ordinary ArUco markers, indicating

that the marker deformation does not affect the marker de-

tection in 2D images. In addition, we have not observed

accuracy variations due to environments.

6. Conclusion

We have proposed a fiducial marker named a shape-

coded ArUco marker that is useful for the task of 2D-3D

registration. We have also developed a method for detect-

ing the marker from the untextured 3D point cloud. The

key feature of our marker is its projective invariant appear-

ance property that preserves the same appearance as the

2D ArUco, but shape information is encoded so that it is

detectable in the untextured 3D point cloud. The experi-

ments show that our method enables accurate 2D-3D corre-

spondences in comparison to the state-of-the-art 2D marker-

based method. Our method works with a single-image input

and does not need any human intervention, unlike the 3D-

3D alignment method. We believe that the proposed method

is useful for bridging the 2D and 3D modalities that is es-

sential to reality modeling.
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