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Abstract— Point set registration plays a critical role in
robotics and computer vision. Early methods considered reg-
istration as a purely geometric problem, presenting excellent
extensibility for various tasks due to their explicit handling of
correspondences; statistical methods were later introduced to
handle noise. However, the two categories of algorithms have
evolved independently without sharing much in common. In
this paper, we leverage the concept of information geometry to
theoretically unify the two classes together by interpreting them
as the same operation but in different spaces associated with
respective metrics. Moreover, based on the proposed unification,
we also develop a novel bandwidth estimation strategy to solve
the long-standing problem of statistical registration algorithms,
and demonstrate its theoretical and practical advantages over
deterministic annealing, the most commonly used technique. We
also present a case study to show how geometric and statistical
approaches can benefit from each other.

I. INTRODUCTION

Pairwise point set registration is a central problem in
computer vision and graphics, which plays an important
role in 3D reconstruction, shape retrieval, medical imaging,
and robot vision. It is formulated as finding the optimal
rigid transformation T, consisting of rotation R and trans-
lation t, between two point sets A = {a1,a2, . . . ,am} and
B = {b1,b2, . . . ,bn}.

The difficulty of registration lies in the unknown corre-
spondences between bj and ai. As pioneering approaches,
geometric algorithms such as Iterative Closest Point (ICP) [1]
first proposed to tackle this problem by alternating be-
tween establishing correspondences and optimizing T. Other
methods based on statistics [2], [3], graph matching [4],
feature correspondence [5], and deep learning [6] were later
introduced to address various challenges. In this work, we
focus on the geometric and statistical approaches since they
are used by a vast majority of registration tasks.

While statistical methods excel at coping with various types
of noise, geometric ones provide more choices in various
conditions due to their explicit handling of correspondences.
Despite the maturity of these methods, there still exist some
long-standing problems. First, the two kinds of algorithms
evolved independently. As a result, the relationship between
the two classes is unclear, preventing them from sharing
techniques for mutual benefit. Second, existing statistical
registration methods lack effective strategies to estimate
the bandwidths, and heavily depend on empirical tuning
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without any theoretical justifications [7]. Consequently, their
performance is hindered from further enhancement.

In this work, we aim at developing a unified framework as
well as a reasonable bandwidth estimation strategy to tackle
the aforementioned problems. For unification, we show that
the relation between geometric and statistical registration
algorithms can be explained from an information geometric
perspective, where both geometric and statistical approaches
are regarded as conducting the same operation but in different
spaces. For bandwidth estimation, we show that the objective
function developed for registration intrinsically serves as a
guidance for estimating bandwidths; hence we do not need
to tune them empirically. We summarize our contributions as
follows:
• A theoretical unification that bridges the geometric and

statistical registration approaches for mutual benefit.
• A bandwidth estimation strategy with theoretical and

practical advantages over existing approaches.
It is noteworthy that there already exist some attempts

to bridge the geometric approaches with the statistical ones
via expectation-maximization (EM) [7], [8]. However, the
fact that the underlying metric of the EM algorithm is the
Kullback-Leibler divergence (KL-divergence) prevents these
works from explaining other divergence-minimization-based
methods [9], [10]. As a result, such a unification cannot
generalize to all the cases. On the other hand, our explanation
suits all cases well without exception.

II. RELATED WORK

Geometric and statistical methods possess their respective
merits in solving the point set registration problem. Specif-
ically, owing to the explicit handling of correspondences,
geometric methods are more flexible in tasks such as
symmetric registration and outlier rejection. On the other
hand, statistical ones are more accurate under conditions such
as point-wise varying noises or clustering-based registration.
We summarize their common objectives in Table I, where
MM and KDE respectively stand for mixture model (a.k.a.,
mixture family distribution) and kernel density estimation.

a) Geometric approaches for registration: By formulat-
ing the objective as the orthogonal Procrustes problem [11]
with unknown correspondences, ICP [1] leads the devel-
opment of geometric approaches for point set registration.
Some variants of it present alternatives on establishing
correspondences. For example, EM-ICP [7] relaxes the one-
to-one correspondence rule to soft assignment to deal with
inaccurate initialization. Gold et al. [12] convert the soft
assignment matrix into a doubly stochastic one to allow
symmetric registration. Trimmed-ICP [13] robustifies the



TABLE I: Summary of geometric and statistical registration
algorithms.

Problem formulation Example

Geometric Orthogonal Procrustes problem
w/ unknown correspondence ICP [1]

Statistical Distribution-fitting
of MM CPD [2]

Statistical Divergence-minimization
between MM/KDE GMMReg [3]

standard ICP algorithm by trimming out probable mis-
correspondences. There also exist other extensions that study
global optimization and efficiency. For instance, Yang et
al. [14] propose a Branch-and-Bound search strategy to
guarantee global optimization. Greenspan and Yurick [15]
use the approximated k-d tree for reducing the computational
cost of matching. The point-to-plane [16], [17] and plane-
to-plane [18] variants substitute the point-to-point correspon-
dence for faster convergence and symmetric registration.

b) Statistical approaches for registration: Statistical
methods treat point sets as mixture family distributions to
cope with noise. Some works consider it as a distribution-
fitting problem. For example, Myronenko et al. [2] consider
one point set as a Gaussian mixture model (GMM) and
another one as samples drawn from it. Consequently, it casts
the registration problem to estimating the parameters of the
distribution, which is solvable via the EM algorithm. Another
thread of work fits MMs to both point sets, and the optimal
transformation can be estimated by minimizing the divergence
between them. For example, Jian and Vemuri [8] recommend
minimizing the L2-divergence between GMMs. Other distri-
butions and divergences are also explored, such as Student’s t-
distribution [19], hybrid mixture model [20], Jensen-Shannon
divergence [10] and Cauchy-Schwarz divergence [9].

c) Attempts to unify geometric and statistical ap-
proaches: There already exists literature that attempts to
unify geometric and statistical approaches. For example,
Granger and Pennec [7] interpret ICP as minimizing the sum
of Mahalanobis distances between Gaussian distributions.
Jian and Vemuri [8] explain ICP as an approximation of
minimizing KL-divergence between two GMMs. Segal et
al. [18] use maximum likelihood estimation (MLE) to
maximize the sum of probabilities of distances between paired
points, which actually leads to the same conclusion drawn
by [8] but from a different perspective. The main difference
between these existing works and our proposal is that,
while they treat ICP as a particular case of their respective
objective functions without referring to its variants, we
provide thorough theoretical explanations to unify geometric
and statistical methods without any exception.

III. A UNIFIED FRAMEWORK FOR GEOMETRIC AND
STATISTICAL APPROACHES

We first need to unify distribution-fitting and divergence-
minimization methods within the statistical class before
unifying the geometric and the statistical ones.

Remark 1: The procedure of maximizing likelihood is
equivalent to minimizing KL-divergence: argmax

θ
P (x; θ) =

argmin
θ

KL (P (x; θ?) |P (x; θ)); where θ is the estimated

parameter and θ? is the ground-truth one.
Per Remark 1, the objective function of distribution-fitting

methods can be rewritten as minimizing divergence:

argmax
T

∏
P (bj ;A,T, θ) ≡

argmin
T

KL (P (B; θb) |P (A;T, θa)) ,
(1)

where P (A;T, θa) =
∑
αiP (ai;T, θai) and P (B; θb) =∑

βjP (bj ; θbj) are MMs constructed from point sets A and
B. We hereafter denote them as P (A) =

∑
αiP (ai) and

P (B) =
∑
βjP (bj) for notational simplicity. Now, all the

statistical methods can be seen as a divergence-minimization
problem, which lays the foundation for our unification.

KL-divergence is not the only choice for formulating the
objective function. In fact, as employed by numerous related
works [8]–[10], there are many off-the-shelf divergences
for selection. However, not all of them are suitable for the
registration problem. As a naive rule, we desire the selected
divergence to be invariant when the points are encoded in
different ways. Specifically, given a mapping h, we want the
divergence to satisfy

D (P |Q) = D (h (P ) |h (Q)) . (2)

Eq. (2) directly leads to the theory of f -divergence, which con-
tains a group of famous divergences such as KL-divergence,
total variation, and all of the α-divergences. We present its
formal definition in Lemma 1.

Lemma 1: The f -divergence: Df (P |Q) ,
∫

Ω
pf
(
q
p

)
dµ

is an invariant measurement, where µ is the reference
distribution satisfying p = dP

dµ and q = dQ
dµ , and f is a

smooth convex function. It is convex w.r.t. both P and Q.
A detailed introduction together with proof of Lemma 1

can be found in P54-P65 of [21]. Although the f -divergence
is a reasonable choice to formulate the objective function,
it is seldom analytically computable when the incorporated
distributions are MMs. Therefore, we need to find a solvable
upper bound for optimization purposes.

Given two MMs written in the form of P =
∑M
i αiPi

and Q =
∑N
j βjQj , where Pi and Qj are the respective

component distributions of P and Q, and αi and βj are their
weights; we can treat them as having the same number of
components 

P =
∑MN
i αi,nPi,n

Q =
∑MN
j βj,mQj,m

,

where



αi,1 = · · · = αi,n = αi

N

βj,1 = · · · = βj,m =
βj

M

Pi,1 = · · · = Pi,n = Pi

Qj,1 = · · · = Qj,m = Qj

.

(3)



Algorithm 1: The unified algorithm for point set
registration

Input: Point sets A and B, initial transformation T
While not converged:
• Step 1: Find a mapping ε : R3 →M (or R3) for

each point ai and bj under current T.
• Step 2: Establish correspondences on M (or R3)

under current T.
• Step 3: Minimize the sum of divergences (or

Euclidean distances) w.r.t. T.

Owing to its convexity, we can define an upper bound of the
f -divergence Df (P |Q) in the summation form via Jensen’s
inequality [22]

Df (P |Q) = Df

M,N∑
i,n

αi,nPi,n|
M,N∑
j,m

βj,mQj,m


6
M,N,M,N∑
i,n,j,m

Df (αi,nPi,n|βj,mQj,m) .

(4)

Moreover, since MMs are invariant to permutation of indices,
we can always tighten the upper bounds in the form of

Df (P |Q) 6
M,N,M,N∑
i,n,j,m

Df

(
αi,nPi,n|βs(i)Qs(i)

)
6
M,N,M,N∑
i,n,j,m

πijDf (αi,nPi,n|βj,mQj,m)

=

M,N,M,N∑
i,n,j,m

πijDf

(
αi
N
Pi,n|

βj
M
Qj,m

)
,

(5)

where βs(i)Qs(i) denotes the nearest component of Q w.r.t.
αi,nPj,m, and πij is a weight coefficient s.t.

∑
j πij = 1.

Since the MMs generated by the two point sets commonly
obey αi = βj =

1
M , by applying Eq. (5) to the registration

problem, the objective function can be written as

J =

M,N,M,N∑
i,n,j,m

πijDf

(
1

MN
P (ai) |

1

NM
P (bj)

)
. (6)

Moreover, according to the invariance property of the f -
divergence, we can equally scale each component distribution
by MN without changing the objective function. Conse-
quently, the above equation is simplified to

J =

M,N∑
i,j

πijDf (P (ai) |P (bj)) . (7)

Recalling that the objective functions of ICP in its gener-
alized form (i.e., soft assignment) is written as

J =
∑

πij ‖T ◦ ai − bj‖22 , (8)

we can see that it is very similar to Eq. (7), except that
the Euclidean distance is replaced by the f -divergence. To

Euclidean distance

(a) Geometric

Fisher Information Metric

(b) Statistical

Fig. 1: Conceptual illustration of how geometric and statistical
methods work. While geometric approaches operate on
Euclidean space, statistical ones work on statistical manifold.

have a more comprehensive understanding of what statistical
methods actually do, we introduce another property of the
f -divergence shown in Lemma 2.

Lemma 2: The f -divergence naturally introduces geomet-
ric structures to P and Q, where fisher information metric
(FIM) is the associated Riemannian metric. Also, we can
always use a convex function f satisfying f(1) = 0, f ′(1) =
0 and f ′′(1) = 1 to formulate a standard f -divergence.

Lemma 2 in fact leads to the theory of information
geometry [21]. It studies statistics with geometric tools by
treating distributions as points on a Riemannian manifold M.
For proof:

Proof: Given two neighboring points P (x; θ) and
P (x; θ + δθ) (hereafter denoted as P (θ) and P (θ + δθ) for
notational simplicity) on M, we can obtain the local form
of the f -divergence:

Df (P (θ) |P (θ + δθ)) =

∫
P (θ) f

(
P (θ + δθ)

P (θ)

)
. (9)

By expanding the term f(·) with Taylor expansion to the
2nd order and using the properties f(1) = 0, f ′(1) = 0 and
f ′′(1) = 1, Eq. (9) can be rewritten into

Df =

∫
P (θ)

(
f

(
P (θ)

P (θ)

)
+
∂f

∂θ
δθ +

1

2
δθT

∂2f

∂θ2
δθ

)
=

1

2

∫
P (θ) ·

(
0 + 0 + δθT

∂2f

∂θ2
δθ

)
=

1

2
δθT

(∫
·
(

1

P (θ)

)
·
(
∂

∂θ
P (θ)

)(
∂

∂θ
P (θ)

))
δθ

=
1

2
δθT

(∫
P (θ)

∂ logP (θ)

∂θ

∂ logP (θ)

∂θ

)
δθ

=
1

2
gijdθ

idθj ,

(10)
where Einstein Summation form is used and gij =∫
P (θ) ∂ logP (θ)

∂θi

∂ logP (θ)
∂θj

is exactly the FIM.
Since the last line of Eq. (10) is a general notation for

distance, we can also express the euclidean distance in the
same form by changing gij to the Kronecker-delta. Therefore,
we can now express the objective functions of both statistical



and geometric methods in the unified form of

J =
πk
2
gkijdθ

i
kdθ

j
k, (11)

where k denotes the indices of pairs of points; and gij encodes
distinct metrics for statistical and geometric methods.

With this unified objective function, we can conclude that
the two classes of algorithms, in fact, conduct the same
operations in different spaces associated with different metrics.
Specifically, as illustrated in Fig. 1, they all actually do ICP
(or its variants) but in distinct spaces.

One merit of the unified explanation is that, we are freed
from having to select between geometric and statistical regis-
tration algorithms. I.e., we can always develop an algorithm
that imitates ICP and its variants on handling correspondences
while keeping the algorithm statistical to handle noise. We
summarize the unified algorithm in Algorithm 1, where ε is
an endomorphism (R3 → R3) for geometric methods and a
homomorphism (R3 →M) for statistical counterparts.

IV. AN INTRINSICALLY CONTAINED METHOD FOR
BANDWIDTH ESTIMATION STRATEGY

We now put Algorithm 1 into practice. A major problem
faced by many divergence-minimization-based approaches
lies in how to define an effective mapping ε : R3 → M.
Fortunately, the aforementioned f -divergence intrinsically
contains an approach for doing so. To maintain consistency
with other registration literature, and without loss of generality,
we hereafter assume that all the points within a given point
set are contaminated by the same isotropic Gaussian noise.

Since the expectation of each Gaussian distribution can be
naturally determined as the point position in the Euclidean
space, the only remaining problem related to the mapping
pertains to the covariances Σa and Σb. In the case of
clustering-based approaches [23], [24], they are easy to
estimate and can be treated as known parameters. However,
in general cases, the mapping is considered as a bijection,
which leads to the bandwidth estimation problem of KDE.

Empirically, the bandwidth of a general KDE can be
estimated beforehand and fixed with rule-of-thumb meth-
ods [25]. However, in the context of the registration problem,
a dynamically updated one would be more suitable since the
relative position of the two point sets varies according to the
transformation T.

The heuristic method of deterministic annealing is a popular
tool for setting the bandwidths Σa and Σb [3], [8], [9].
Its philosophy is based on the asymptotic behaviors as
studied by Chui et al. [26]. In detail, Σa and Σb control the
correspondences πij between point sets. The correspondences
are vague when Σa and Σb are large, and become asymptot-
ically one-to-one when they approach 0. Therefore, in order
to take advantage of both soft assignment and one-to-one
correspondences to avoid local minima and obtain accurate
registration, deterministic annealing gradually decreases Σa

and Σb from large initial values until convergence. Although
promising performances have been observed, we hesitate to
do so since bandwidth estimation is an independent problem
in statistics with more effective solutions.

We claim that the objective function developed for regis-
tration intrinsically acts as a guidance for dynamically setting
the bandwidths. Specifically, it reminds us of the bandwidth
estimation technique based on risk functions [27].

Remark 2: A risk function L is defined as the expectation
of a loss f : L = E [f ]. Applying to bandwidth estimation of
KDE, the optimal bandwidth of a KDE p can be retrieved by
minimizing E [f (p, q)], where q is the underlying ground-
truth distribution for reference.

According to the definition in Remark 2, the f -divergence
in fact naturally formulates one risk function in the form
of Df = Ep

[
f
(
q
p

)]
. Therefore, if we alternately fix the

point P (ai) or P (bj) as the reference, the f -divergence also
serves as an objective function for estimating the bandwidth
of the other one.

If the reference distribution q is the ground-truth, a plausible
bandwidth of the variable distribution p would be the one
that minimizes the difference between them. However, for the
registration problem, since q is just temporarily fixed without
any guarantees to be faithful, directly tuning p towards it
would unavoidably introduce large variance for smoothing
purposes. This problem is known as the bias-variance-tradeoff,
and we employ the minimizing entropy criterion proposed
by Jiang et al. [28] as a solution. Specifically, we can limit
the variance of a KDE by adding in a regularization term of
its entropy, which leads to our final objective function:

J (T,Σa,Σb) =
∑

πijDf (P (ai) |P (bj))

+ λ1H (P (A)) + λ2H (P (B)) ,
(12)

where H (·) is the entropy, and λ1 and λ2 are the regular-
ization parameters. As commonly used in other registration
algorithms, Eq. (12) can be facilely minimized via alternating
optimization, which update T, Σ and π alternately.

V. HOW UNIFICATION HELPS MUTUAL BENEFIT:
A CASE STUDY

Based on the aforementioned unification, we can always
design an algorithm that takes advantage of both statistical and
geometric methods, namely, an algorithm based on divergence-
minimization with explicitly maintained correspondences. In
this section, we take the symmetric registration task as an
example to demonstrate its effectiveness.

A. Problem formulation

Assuming that the two point sets consist of a similar amount
of points and no preliminary information of the registration
order (A→ B or B → A) is given, symmetric registration
aims at alleviating the effects of registration order on the
final results. That is, we want A→ B and B → A to return
nearly the same estimations.

This problem is easy to solve for geometric methods. For
example, as used in [12], [29], [30], it is a common practice
to convert the aforementioned soft assignment matrix π to
an (asymptotic) doubly stochastic one in each iteration. In
detail, the property of doubly stochastic matrices that each
row and column sums to 1 helps to ignore the normalization



Fig. 2: An example of the synthetic data contaminated by
Gaussian noise and outliers. Left: point clouds in their initial
poses. Right: Our registration result.

TABLE II: Errors on synthetic data (both rotational and
transformational errors are in 1e− 2 scale).

Mean Median

R err t err T err R err t err T err
ICP 39.49 6.93e-4 39.49 2.91 6.71e-4 2.91

RPM 4.92 7.04e-4 4.93 4.29 6.96e-4 4.29
CPD 1.67 3.30e-4 1.67 1.32 3.24e-4 1.32
SVR 11.73 6.02e-4 11.73 4.21 4.08e-4 4.21
Ours 0.93 3.73e-4 0.93 0.96 3.56e-4 0.96

axis of π, hence the registration order is perfectly balanced.
On the other hand, dealing with this task is a weakness of
existing statistical methods. In detail, the “A as model and
B as data” principle of distribution-fitting-based methods [2],
[20] naturally requires a pre-defined registration order. For
the divergence-minimization-based methods, although we can
rely on some symmetric divergences [9], [10], there still lacks
a unified solution when using general divergences.

Our unification helps the statistical algorithms to strengthen
symmetric registration. In detail, if we treat each component
distribution as a point on M, we can naturally follow the
geometric methods and convert the assignment matrix π to
doubly stochastic in each iteration. The only difference is
that, while geometric methods use the Euclidean distance,
the statistical ones must replace it with a divergence.

B. Experiments

We select 4 other candidates for comparison: ICP [1],
RPM [12], CPD [2] and SVR [31]. Among them, ICP solves
the registration problem in a pure geometric manner. RPM
converts the correspondences of ICP to doubly stochastic to
realize symmetric registration. CPD and SVR respectively
represent the distribution-fitting and divergence-minimization-
based statistical approaches. Regarding the implementations
used in the experiments, ICP and RPM are implemented
by ourselves, CPD is provided by the authors, and SVR is
from the ProbReg Python library1. For all of the following
experiments, we assume the datasets are not under extreme
conditions (i.e., severe outliers, low overlaps, or significant dis-
tinction between numbers of points) since they are commonly
considered as independent tasks addressed by extending the
4 base approaches with other techniques [13], [32]–[34].

1ProbReg: http://probreg.readthedocs.io/. Last accessed on
March 24, 2021.
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Fig. 3: Comparison w.r.t. varying levels of noise and ratios
of outliers. Each experiment consist of 10 different setups.

We use the symmetrized KL-divergence to specify the f -
divergence for maintaining symmetry. Also, in order to show
that the tools developed for geometric methods can be directly
applied to statistical ones, we follow RPM [7] and use softmax
for soft assignment and Sinkhorn iteration [35] for converting
the assignment matrix π to doubly stochastic. For each pair of
point sets in both synthetic and realistic datasets, we conduct
the registration from both A → B and B → A. We use
R−Err =

∥∥I−RT
gtResti

∥∥
F

, t−Err = ‖testi − tgt‖2 and
T−Err =

∥∥I−T−1
estiTgt

∥∥
F

as the respective error metrics
for rotation, translation and transformation. For parameter
setup, the regularization coefficients for bias-variance-tradeoff
in our method are set to λ1 = λ2 = 50. The annealing
parameter is set to 0.95 for RPM and 0.9 for SVR, with
which we observe better performances. For CPD, the weight
of uniform distribution is set to 0.1. The maximum iteration is
set to 100 for all the algorithms except SVR, which is set to
10 for its slow clustering procedure. In fact, we observe that
once the SVR algorithm succeeds, the number of iterations
shows minor effects on its final accuracy.

a) Tests on synthetic data: We first test how different
algorithms perform under noisy conditions. For experimental
setup, we base the tests on the bunny and the dragon point
sets given in [36], [37], and a teddy from Free3D2. They
are all down-sampled to around 1000 points for a reasonable
runtime, as shown in Fig. 2. We add isotropic Gaussian noises
with standard deviation σ = 0.0015I and σ = 0.0025I, as
well as 10% of outliers to the two point sets respectively.
The registration is repeated 20 times on each pair of point
sets. For each trial, a random ground-truth rotation R drawn
from Euler angles in the range of (0◦, 60◦) along each axis,
and a random translation is used. The results are shown in
Table II. As we can see, our statistical symmetric registration
method can champion both the rotational and transformational
estimations, although it performs negligibly inferior to CPD
on estimating the translations.

We also test the robustness of our algorithm w.r.t. different
ratios of outliers and levels of noises. For setup, we use
the aforementioned bunny point set and fix the ground-truth
rotation to 30◦ in Euler angles. For outliers, we use the 10
ratios uniformly distributed within 5% to 50%. For noise,
we vary the covariances of Gaussian noise from 1e− 3I to
5e−3I with a step size of 5e−4I. We repeat the experiment

2Free3D http://www.free3d.com. Retrieved March 24, 2021.

http://probreg.readthedocs.io/
http://www.free3d.com


Fig. 4: An example of the ETH Hauptgebaude dataset. Some
points are cropped for better visualization. Left: the point
sets in their initial poses. Right: our registration result.

TABLE III: Errors on the laser scan data.

Mean Median

R err t err T err R err t err T err
ICP 2.11e-2 0.61 0.61 1.90e-2 0.55 0.61

RPM 5.06e-2 0.11 0.11 4.65e-2 0.11 0.11
CPD 2.08e-2 0.15 0.15 1.93e-2 0.15 0.15
SVR 6.69e-2 0.48 0.49 4.21e-2 0.36 0.49
Ours 1.66e-2 0.12 0.12 1.56e-2 0.12 0.12

10 times with each ratio and each level. The mean errors are
plotted in Fig. 3. As shown, for the case of different levels of
noise, our proposal in general performs better than CPD. For
the case of distinct ratios of outliers, our method can stably
present higher accuracy compared with the others.

b) Tests on real data: We also conduct experiments on
laser scan dataset to study the real-world performances. In
detail, we base the tests on the first 10 scans of the ETH
Hauptgebaude dataset [38], as shown in Fig. 4. This dataset is
challenging as it consists of repetitive elements. Since some of
the original ground-truth rotations are either extremely large
that none of the candidates can give reasonable estimations,
we manually reset the rotations to the range of (0◦, 60◦) in
Euler angles along each axis. We also change the weight
of the uniform distribution of CPD to 0 as we found it
barely succeeds with other numbers. Again, each point set
is down-sampled to around 1000. The results are shown
in Fig. III. As can be seen, our method outperforms all
the others on estimating rotations. For translational and
transformational errors, although RPM presents slightly better
results, the relative differences between them and ours are
small compared to the improvements on rotations.

VI. PERFORMANCE OF THE PROPOSED BANDWIDTH
ESTIMATION STRATEGY

In this section, we study the performance of our proposed
bandwidth estimation strategy. For experimental setup, we use
the aforementioned synthetic bunny with a fixed ground-truth
rotation of (30◦, 30◦, 30◦) in Euler angles; and keep noise,
outliers, and parameter settings the same as mentioned above.

a) Comparisons between deterministic annealing and
our proposal: We study the relative performance between
the commonly used deterministic annealing technique and
our proposal to show the superiority of our bandwidth
estimation strategy. Specifically, given initial bandwidths,
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Fig. 5: Comparison of deterministic annealing and our
bandwidth estimation strategy. Left: Accuracy w.r.t. different
annealing parameters. The orange line is achieved by fixing
the tradeoff parameters to λ1 = λ2 = 50. Right: Error
distribution with λ1 = λ2 uniformly drawn from [1, 60].

the deterministic annealing technique multiplies it with a
shrinkage coefficient s after each iteration. In our implemen-
tation, we observe that the registration performances become
significantly unstable when s is within the range of (0.9, 0.95),
and it hardly succeeds when s ∈ (0, 0.9). Therefore, we
limit s to be drawn from (0.95, 1) to make the comparison
meaningful. The results are reported in Fig. 5. As shown in
the figure, the performance of deterministic annealing is not
stable as minor changes on s led to conspicuous shifts in the
estimated results. Moreover, its accuracy is still significantly
inferior to our strategy.

b) Stability w.r.t. different λ: As the only free parameters
in our proposal, it is meaningful to study how different λ1

and λ2 for bias-variance-tradeoff can affect the performance.
We again simply assume λ1 and λ2 to share the same value:
λ1 = λ2 = λ. For testing purposes, we uniformly pick 20
trials with λ ∈ [1, 60]. The final errors are summarized in the
histogram in Fig. 5. As can be seen, our bandwidth estimation
strategy is stable w.r.t. varying λ within a broad tuning range.
In detail, the apparent dominant error suggests that a large
scope of different λ can eventually lead the algorithm to the
same estimation. Moreover, compared to the performance of
the deterministic annealing mentioned above, the difference
between the best and worst estimations of our proposal is
only in 10−3 magnitude.

VII. DISCUSSION AND CONCLUSION

In this work, we present a unified framework by explaining
geometric and statistical point set registration algorithms
as conducting the same operations in different spaces. We
also derive a bandwidth estimation strategy for general
divergence-minimization-based methods, which demonstrates
its effectiveness over the existing heuristic method. Also, by
taking the symmetric registration task as an example, we
show how to combine the strengths of both classes, whose
effectiveness is demonstrated in various experiments.

For future work, we plan to combine the statistical
registration methods with other geometric ones to deal with
cases such as partial overlaps and sparse-to-dense registration.
Another direction lies in exploring how to select a suitable
f -divergence for the registration problem, which remains an
open problem in information science.
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