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Abstract

We propose a method for estimating high-definition

spatially-varying lighting, reflectance, and geometry of a

scene from 360◦ stereo images. Our model takes advantage

of the 360◦ input to observe the entire scene with geomet-

ric detail, then jointly estimates the scene’s properties with

physical constraints. We first reconstruct a near-field envi-

ronment light for predicting the lighting at any 3D location

within the scene. Then we present a deep learning model

that leverages the stereo information to infer the reflectance

and surface normal. Lastly, we incorporate the physical

constraints between lighting and geometry to refine the re-

flectance of the scene. Both quantitative and qualitative ex-

periments show that our method, benefiting from the 360◦

observation of the scene, outperforms prior state-of-the-art

methods and enables more augmented reality applications

such as mirror-objects insertion.

1. Introduction

Intrinsic decomposition of scene properties is a long-

standing and essential task in computer vision. It includes

the estimation of lighting, geometry, and reflectance of an

arbitrary scene. Inferring the above properties of a scene en-

ables us to develop various novel applications, especially in

augmented reality, such as object insertion and scene modi-

fication. It is a challenging and extremely under-constrained

problem because of the complexity of light transportation

on complicated geometry and various material reflectances

in real-world. The majority of previous methods used per-

spective cameras for solving this problem. However, the

limited field of view of a perspective camera results in the

lack of observation of the entire scene, making this inverse

problem even more intractable.

To overcome the problem, we propose a method that uses

a pair of 360◦ images under equirectangular projection as

input. Our method utilizes this input to bring up many ad-

vantages that the perspective approach does not. Firstly, the

360◦ image captures the entire scene at once, offering us

an adequate observation for lighting estimation. Secondly,
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Figure 1. Our system consists of two 360◦ cameras in a top-bottom

setting. We present the predicted reflectance and surface normal of

the scene at the bottom-left of this figure. The bottom-right are vir-

tual mirror-objects relighted by our illumination map at two differ-

ent locations. Our method can recognize the geometric difference

among 3D locations and preserve high-frequency information of

the lighting, enabling us to insert mirror-objects around the entire

scene with appealing reflection effects.

the stereo input naturally encodes the depth information,

making the geometry estimation possible. Furthermore, by

jointly leveraging the physical constraints between lighting

and geometry, the reflectance can be revealed. Figure. 1 il-

lustrates the camera setting for capturing 360◦ stereo input

and the estimated results of our method.

Leveraging 360◦ stereo input, we achieve two strengths

in lighting estimation: (i) our lighting is spatially-varying

and 3D coherent, which means the lighting will be differ-

ent and changing smoothly for different 3D locations con-

dition on the scene geometry; (ii) our lighting is in high-

definition, which means it is generated in high-resolution

and contains high-frequency details of the scene to enable

mirror-like objects insertion. The lighting estimated by
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perspective methods rarely has these properties. They ei-

ther estimate the lighting globally [20, 16] or per-pixel-

individually [24, 11, 18], having no consistency between

different locations. In addition, because of the limited field

of view in perspective images, prior works have difficul-

ties in ‘inferring’ the unseen regions of the scene in high-

definition. But, our method naturally avoids this problem.

The reflectance estimation is also an ill-posed problem

under the perspective cameras [4]. However, with the 360◦

stereo images, the input contains more information about

the scene’s lighting and geometry, giving us substantial

leads and more constraints to infer both reflectance and nor-

mal.

In this paper, we present a method that utilizes the

strengths of the 360◦ input to jointly estimate the high-

definition and spatially-varying lighting, reflectance, and

geometry of the entire scene. Our contributions are:

1. A near-field environment light that can generate

spatially-varying and 3D coherent high-definition illu-

mination maps when given any 3D location within the

scene.

2. A deep learning model that can estimate the reflectance

and surface normal of the entire scene.

3. A rendering and refinement model that leverages the

physical constraints between lighting and geometry to

jointly estimate a finer reflectance.

2. Related Work

Lighting Estimation Inferring the lighting of the envi-

ronment enables us to render a synthetic object into real-

world. Debevec [7] used a light probe to measure an HDR

illumination map. Though a mirror-ball is accurate in light-

ing estimation, it is not suitable for estimating lighting at

different locations. Many recent studies prefer spatially-

varying lighting for indoor scenarios, which predicts dif-

ferent lighting given different locations within the scene.

[10, 9] use deep learning models to explicitly predict the

location and intensity of the primary light sources; [11, 28]

adopt the spherical harmonics lighting model for fast esti-

mation; [27] assumes indoor objects located in a six-faces-

box; [25] uses a deep model to represent the scene in light-

ing volume; [24] warps the seen scene points into the tar-

get illumination map based on geometry estimation, then

per-pixel-independently completes the unseen region by a

neural network.

Due to the limited field of view of perspective images,

all the previous methods either use simplified lighting mod-

els; or simplify environment models; or hallucinate the un-

observed scene’s geometry and appearance, leading to lost

or inconsistent lighting. It is also why previous works are

unsuitable for inserting mirror-objects, which requires high-

definition illumination maps and detailed lighting from the

scene.

Intrinsic Image Decomposition The studies in the in-

trinsic image decomposition can be divided into two folds

by its input types: the object-scale and the scene-scale.

An object-scale intrinsic decomposition method usually as-

sumes global illumination. The problem can be solved us-

ing carefully designed handcrafted priors [3], or recently

developed deep learning models [23].

For scene-scale decomposition problem, Barron et al. [2]

takes RGB-D as input to estimate the reflectance, lighting

and normal by applying handcrafted priors. [5] proposes

an ℓ1 norm for constraint the reflectance to be piecewise

flattening. The prevailing deep learning methods also show

its effectiveness in this task: [21] proposes a CNN trained

by a synthetic dataset. The subsequent studies [8, 19, 30]

enlarge the training datasets and enrich the designs of net-

work architectures and loss functions. Li et al. [18] pro-

poses a framework that jointly reasons shape, lighting and

SVBRDF from a single perspective image. However, they

simplify the lighting model and fail to consider geome-

try constraint between different locations within the same

scene. Our method, taking the 360◦ input to fully observe

the lighting and geometry of the entire scene, estimates the

scene-level reflectance, normal, and lighting with physical

constraints.

360◦ Panoramic Imaging Many studies focus on geom-

etry estimation by 360◦ panoramic images. Li et al. [17]

captures the 360◦ stereo by fixing and rotating two concen-

tric cameras for depth estimation. Kim and Hilton [14] pro-

poses a 3D mesh modeling method using multiple pairs of

spherical images captured by a line scan camera at different

locations. Recently, consumer-level 360◦ cameras are used

for depth estimation from the video clip [13] and a stereo-

pair [26]. Other than depth estimation, Banterle et al. [1]

takes an annotated high dynamic range (HDR) panoramic

environment map for local illumination recovery. Our work

fills a literature gap by estimating the lighting, geometry,

and reflectance from the 360◦ stereo input.

3. Method Overview

Our method uses two 360◦ images taken from a 360◦

stereo camera to estimate the target scene’s lighting, ge-

ometry, and reflectance. It consists of four modules, as il-

lustrated in Fig. 2. The first module shows our 360◦ cam-

era setting and depth estimation from the stereo input (see

Fig. 2 gray part, Sec. 4.1). The second module is the light-

ing estimation that computes a near-field environment light

from the input images and estimated depth. We treat each
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Figure 2. System overview. We first estimate the depth of a stereo 360◦ input. Then a near-field environment light is reconstructed from

the input images and estimated depth for estimating illumination map later. We parallelly apply an RN-Net on inputs and estimated depth

for reflectance and normal estimation. Finally, we use the illumination map and normal map to render the shading, which then jointly

refines the reflectances.

scene point as a light source in the 3D space and build a

near-field environment light. With this near-field environ-

ment light, given any 3D location within the scene, our

method can reconstruct the corresponding illumination map

in high-definition for object insertion and relighting (see

Fig. 2 green part, Sec. 4.2). The third module is reflectance

and normal estimation. It is a deep learning model, named

RN-Net, for estimating the reflectance map and surface nor-

mal of the entire scene. To preserve the high-frequency in-

formation from the input, we take the input with the reso-

lution to be 512 × 1024. To tackle the large input size, we

proposed a pyramid structure for RN-Net to estimate the re-

flectance and surface normal from small to large (see Fig. 2

orange part, Sec. 4.3).

With these three modules, our method can obtain the

scene’s lighting, reflectance, and geometry at a certain

granularity. To obtain more refined estimates of shadings

and reflectances, we use the fourth module that performs

physically-based rendering and refinement that aims at min-

imizing the reconstruction loss with the input (see Sec. 4.4

blue part).

4. Proposed Method

4.1. Camera Setting and Depth Estimate

Our imaging setup consists of two 360◦ cameras in a top-

bottom setting as shown in Fig. 3. A similar setup has also

been used by [26]. This top-bottom arrangement ensures

only the vertical disparities between two 360◦ images. The

captured 360◦ image is in equirectangular projection, allow-

ing us to capture the entire scene at once, while the stereo

images enable us to estimate the geometry at a low cost.

𝑏 𝜃𝑡
𝜃𝑏 𝐱

𝑣𝑡
𝑣𝑏

𝑑𝑡
Top

Bottom

Figure 3. The system comprises two Samsung Gear 360◦ cameras.

Once calibrated, a point x in the scene will be aligned in the 360◦

images only with a vertical angular disparity ∆θ.

As illustrated in Fig. 3, for a point x = [x, y, z]⊤ ∈ R
3

in the 3D space, let its projection on the top and bottom

images be ut = [ut, vt]
⊤ ∈ R

2 and ub = [ub, vb]
⊤ ∈ R

2,

respectively. When the two cameras are aligned vertically

with the same v-axis, the displacement ∆θ ∈ R of x on two

images can be given by

∆θ = θb − θt =
π

h
(vb − vt) . (1)

h is the height of image, vb and vt are the v-coordinates

of the projected image points ut and ub respectively. The

distance between x and the top camera, dt is given by trian-

gulation as:

dt = b

(

sin θt
tan∆θ

+ cos θt

)

, (2)

where b ∈ R+ is the baseline between the two cameras.

Therefore, with a stereo matching method to find match-

ings along the vertical direction, we can obtain the given
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point’s angular disparity and depth by the above Eqs. (1)

and (2). In this paper, we use a recent CNN-based stereo

method, 360SD-Net [26] for depth estimation.

4.2. Lighting Estimation

To preserve the high-frequency lighting and geometry in-

formation of the 360◦ environment, we propose the second

module to reconstruct a near-field environment light for es-

timating the high-definition spatially-varying illumination

map given an arbitrary 3D location in the scene.

Near-field Environment Light We assume that all the

observed scene materials are diffuse when estimating the

lighting. It is also a convention, and a good approximation,

to treat scene material as diffuse when doing lighting esti-

mation [27, 30].

For simplicity, we use the top camera as the reference

camera to omit the subscript of the notations. Following

the notation above, (c,u, d) represents a pixel in the 360◦

image, where c ∈ R
3 is the RGB observation of a point

in the camera, i.e., the pixel value with three channels; and

u is its position on the reference camera with coordinates

[u, v]T ; d ∈ R+ is the estimated depth from the previous

step.

We define f(·) as the projection function between a

pixel in 360◦ image under the equirectangular projection

to the world coordinates: (c,x) = f(c,u, d). Applying

the projection f(·) to all pixels on the 360◦ image will

give us the representation of the near-field environment light

E ∈ R
n×6, where n is the number of points, as:

E = {(ci,xi) | i ∈ pixels} (3)

Each point in the scene is treated as a light source with in-

tensity c and its position x.

Illumination Map Given an arbitrary 3D point x′ in the

scene, we re-project the near-field environment light E to

the new point to generate an illumination map for x′ by:

{(c′i,u
′
i, d

′
i) | i ∈ pixels} = g(E,x′), (4)

where g(·) projects the coordinates from 3D to 2D illumi-

nation map. However, due to the sparsity of the near-field

environment light, the reconstructed illumination map con-

tains pixels without any projection of the lights, while some

pixels may have many lights fall into. Hence, we need

to refine the illumination map to sort out empty and over-

lapped pixels. The refinement function r(·) is defined as

that for the position u
′
i with many projected lights, only se-

lect the light with the minimum depth value d′. This manner

simulates the occlusion effect in the real world, where one

may obstruct another light. We use the nearest interpolation

method to extrapolate those empty pixels. In summary, our
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Figure 4. The architecture of RN-Net. It follows a U-Net structure.

Please see supplementary material for more details.

reconstructed illumination map is given by applying func-

tions g(·) and r(·) in sequence. To simplify, we use function

w to denote a composition of functions r ◦ g. The recon-

structed illumination map M
′ ∈ R

n×6 at position x
′ is:

M
′ = {(c′i,u

′
i, d

′
i) | i ∈ pixels} = w(E,x′). (5)

4.3. Reflectance and Normal Estimation

The third module is a convolutional neural network,

named RN-Net, for predicting the reflectance and surface

normal of the entire scene at a large resolution.

As shown in Fig. 2, it takes the reference 360◦ image

and estimated depth as the input to infer the reflectance and

normal. Figure. 4 shows detailed network architecture. It

processes the input with four encoder-blocks. Each block

consists of two convolutional layers and a short skip con-

nection between input and output and will down-sample the

feature size into half, similar to ResNet [12]. Then, for

normal and reflectance estimation, we apply another four

decoder-blocks for each task. The decoder is similar to the

encoder but will up-sample the feature size twice larger at

the output. Besides the short skip connection within each

block, we also add a long skip connection between each

layer, as shown in Fig. 4.

To tackle the large input size of the 360◦ images, we ap-

ply a pyramid structure to the RN-Net. The input is first

scaled to a different size, then feed into different RN-Net

for training. In the end, we up-sample all the results to

the original resolution and add them together to get the

reflectance and normal estimation. In this paper, our net-

work takes RGB image with estimated depth as the input

I1 ∈ R
512×1024×4 and scales it to four times smaller to be

I 1

4

∈ R
128×256×4. The overall structure can be illustrated

as:






R1,N1 = Φ1(I1),
R 1

4

,N 1

4

= Φ 1

4

(I 1

4

),

R,N = up(R 1

4

) +R1, up(N 1

4

) +N1,

(6)

where R1, N1, R 1

4

, and N 1

4

are the reflectance map and

normal map at the original size and 1

4
size respectively;
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Φ1(·),Φ 1

4

(·) is the RN-Net in its different scale; up(·) op-

erator represents the bilinear up-sampling; R,N are the es-

timated results of this pyramid structure.

We use a scale-invariant loss for training reflectance:

LR = ‖sR−R
∗‖

2

2
+ ‖s∇R−∇R

∗‖
1
, (7)

where R
∗ is the ground truth of the reflectance map; s is

a scale factor computed by applying least square regression

between R and R
∗; ∇R is the gradient of R. For the train-

ing of surface normal, we define the loss as:

LN = −N
T
N

∗ + ‖∇N−∇N
∗‖

1
, (8)

where the N
∗ is the ground truth of surface normal. Here,

the first term of LN is the cosine loss between normal, while

the second is gradient loss. Both of the reflectance and nor-

mal loss adopt the gradient loss, which makes results piece-

wise smooth, as shown in many previous works [19, 8, 30].

The total training loss is L = LR + LN.

4.4. Rendering and Refinement

The 360◦ images observe the entire scene at once to

provide lighting and geometry of the environment as con-

straints for solving this ill-posed reflectance estimation

problem. Our last module utilizes the estimated illumina-

tion maps and surface normal from previous steps, incorpo-

rating physical insights, to render and refine the shading and

reflectance map.

Shading Rendering For each pixel with index i and its

image location ui in the 360◦ image I, we first compute the

corresponding 3D location xi and estimate an illumination

map centered at the 3D location by Mi = w(E,xi). As we

assume all the scene material to be diffuse, the i-th pixel’s

shading value Si ∈ R
3 can be computed by the integration

of the illumination map and dot product between light di-

rection and surface normal. Hence, the i-th pixel’s shading

value is given by:

Si =
∑

j∈Mi

cj max
(

lj
T
Ni, 0

)

, (9)

where cj and lj ∈ R
3 are the light intensity and light direc-

tion of light at j-th pixel of illumination map Mi, respec-

tively; and Ni ∈ R
3 is the estimated surface normal of the

i-th pixel.

To render the whole shading map S ∈ R
512×1024×3, we

iterate every pixel i in the input image, reconstruct the cor-

responding illumination map Mi and compute every shad-

ing value by Eq. (9).

Refinement Using TV Regularization The input RGB

image I can now be reconstructed by taking the product be-

tween shading map S and reflectance map R. However,

errors and noise will inevitably occur at every step of the

process. Here, we refine the results from previous steps by

optimizing a target energy function:

LTV = ||I− sR⊙ S||22 + λ1||∇R||1 + λ2||∇S||22, (10)

where ⊙ denotes the Hadamard product; s is a scale fac-

tor computed by applying least square regression between

I and R ⊙ S. Our energy loss takes a similar form to to-

tal variation regularization [22] and serves in a similar task,

i.e., to minimize noise and reject outliers.

The first term can be interpreted as the reconstruction

loss between the input and our reconstructed input im-

age. The second term, applying ℓ1 loss on the gradient

of reflectance map, aims to constrain reflectance map be-

ing piecewise smooth. While the third term, ℓ2 loss on the

gradient of shading, aims to suppress the abrupt changes in

shading effects. In this paper, we set the hyper parameters

as λ1 = 0.1, λ2 = 10.

We use the reflectance map R and shading map S from

the previous step as the initialization. Then update the two

maps based on the gradient descend algorithm.

S
′ = S− γ

∂LTV

∂S
, R

′ = R− γ
∂LTV

∂R
. (11)

5. Implementation Details and Dataset

5.1. Training Details

Training Data for RN-Net We use a public dataset Struc-

tured3D [29] as our training data for RN-Net. The Struc-

tured3D is a synthetic indoor dataset with rich layouts and

interior designs. It has 21835 images of different rooms

with 512 × 1024 resolution in equirectangular projection.

It also provides us with ground truth surface normal and

reflectance map for supervised learning. The only incon-

sistency between this dataset and our requirements is that

it does not provide stereo inputs. To overcome this, when

training RN-Net, we take the ground truth depth map and

added with smoothed Gaussian noise as input to simulate

the errors in depth estimation.

Training of RN-Net Our model is trained from scratch

with Adam [15] optimizer. We first train the small scale of

RN-Net Φ 1

4

with batch size to be 32 and the learning rate

to be 10−3. After 100 epochs, we combine both RN-Nets

to further train it with the large scale images. Batch size is

12 for another 50 epochs in the large size. The learning rate

starts from 10−3, then being half every 10 epochs. The RN-

Net is implemented by PyTorch; trained on a single GPU

NVIDIA GTX 1080Ti for around 20 hours.

Total Variation Refinement For optimization on LTV ,

we adopt Adam [15] optimizer with fixed learning rate

5



360° Input Reflectance Normal

O
u

rs
G

T

X Y

In
se

rt
ed

 O
b

je
ct

s

A B X Y

Il
lu

m
in

at
io

n
 M

ap
s

A B

Figure 5. The 360◦ input and results from our method on the synthetic scene ‘barbershop’. We use our estimated illumination maps

to virtually relight mirror-objects at four different locations within the scene. The last two rows present the corresponding estimated

illumination maps and ground truth at each location. Please notice how the inserted ‘cow’ at location ‘A’ and ‘B’ consistently reflect the

surroundings, demonstrating the spatially-coherency of our lighting. The changes between the highlighted areas of the objects inserted at

‘X’ and ‘Y’ also indicate the variance of our lighting at different locations. By comparing with the ground truth, our method can reconstruct

the illumination map with high-frequency details and accurately reflect the geometry of the scene.

10−4. In addition, to avoid overfitting, we apply a ℓ2 loss

between the initialization and optimized results, acting as

the weight-decay. The model is implemented in PyTorch

and converges after 1000 iterations in 2 minutes.

5.2. Testing Data

We prepare two datasets for testing. A synthetic dataset

rendered by Blender [6], and a real dataset captured by our

360◦ cameras.

Synthetic data. We create a synthetic dataset by Blender

to simulating the complex light transportation of an indoor

scene. Each scene consists of two vertically-aligned cam-

eras to capture the whole environment in an equirectangular

projection. The renderer provides us with the ground truth

of reflectance, normal, and illumination map for quantita-

tive evaluation. We showcase some results from our syn-

thetic scenes: ‘school’ in Fig. 1; ‘barbershop’ in Fig. 5;

‘classroom’ in Fig. 6; and ‘bedroom’ in Fig. 7.

Real data. As shown in Fig. 3, we connect and fix two

Samsung Gear 360◦ cameras in a top-bottom manner. The

two cameras are calibrated to vertically align two images

and measure the baseline. We present the captured data

‘office’ in Fig. 8. Following the convention on many 360◦

datasets [29, 26], both the real and synthetic images are cap-

tured with the input resolution to be 512× 1024.

Pre-process for Comparison to Previous Works. We

choose two recently published works for our lighting esti-

mation comparison [18, 25]; and also two for reflectance

and surface normal comparison [2, 18]. Lighthouse [25]

takes perspective stereo images as input to estimate the en-

vironment lighting given a position within the scene. Li et

al. [18] takes a single image while Barron et al. [2] takes

a RGB-D input to estimate the reflectance, normal, depth,

and lighting. All the above methods only take input with

the resolution to be 240 × 320. To satisfy their input re-

quirement, we crop the middle region of our 360◦ stereo

input into small patches with the target resolution. The top

and bottom regions of the input are discarded to avoid the

distortions and simulate the views in perspective projection.

Then we feed the stereo images to Lighthouse [25]; a sin-

gle image to Li et al. [18]; and a single image with depth

estimation to Barron et al. [2].

6. Experiments

Please notice that as there are no previous works that use

a similar setup for this task, we only compare our work with

those using perspective images. The comparisons here aims

6



Li et al. [18] Lighthouse [25] Ours Ground Truth
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11.63 dB
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17.64 dB9.91 dB

Figure 6. Comparison to previous works on inserted mirror-objects and estimated illumination maps. The value of peak signal-to-noise

ratio (higher is better) between each estimated illumination map and ground truth is shown at the bottom of each image. Our method

outperforms all the previous works by providing illumination maps with rich details close to the ground truth.

to demonstrate the strengths of 360◦ images over the per-

spective images in the tasks of lighting estimation and in-

trinsic decomposition of a scene’s properties.

6.1. Lighting Estimation

As shown in Fig. 5, we present the inserted mirror-

objects at different locations within the scene. Our method

estimates the lighting with elaborate high-frequency details.

Our inserted objects correctly reflect the changes of light-

ing among different locations, demonstrating the spatially-

coherency of our lighting model. The two strengths above

jointly contribute to the appealing reflection effects of a vir-

tual mirror-object.

We provide quantitative comparisons between our esti-

mated illumination maps and previous methods [18, 25] in

Fig. 6. As a result of a simplified lighting model, Li [18]’s

illumination map only contains low-frequency information,

leading a mirror-object looks diffuse. Lighthouse [25], in-

stead, based on a simplified model of the scene’s geometry,

can recover part of the scene in low definition. However,

due to the limited field of view of their perspective input,

their hallucination on the unobserved scene is far from sat-

isfactory. By the virtue of the 360◦ input, our near-field en-

vironment light provides an accurate representation of the

lighting and geometry of the scene. Hence, our illumina-

tion maps are all estimated in high-definition and very close

to the ground truth.

Methods Reflectance Normal

Barron et al. [2] 0.108 70.6

Li et al. [18] 0.084 34.0

Ours 0.073 24.6

Table 1. Quantitative comparison on our synthetic scenes. We

use scale-invariant mean-square-error (sMSE) for reflectance and

mean angular error (MAE) in degrees for normal. Lower is better

for both the metrics.

6.2. Reflectance and Normal Estimation

We showcase the quality of our estimated reflectance

map and surface normal map in the first row of Fig. 5. We

also present quantitative results in Fig. 7 and Table 1. As

mentioned in Sec. 5.2, all the competing methods [2, 18]

take small resolution perspective input. To avoid the heavy

distortion on 360◦ images, we crop the middle region of

our 360◦ image into four 240 × 320 image patches as the

input for others. Then we merge the results for viewing and

comparison. The discarded regions are displayed in black

in their results. Although our method can estimate the en-

tire scene, the quantitative evaluation shown in Fig. 7 and

Table 1 is only computed on those regions that are both gen-

erated by all the methods for a fair comparison.

Li et al. [18] estimates the reflectance from prior knowl-

edge and past data. They present a wrong estimation on the

‘wall’ region in Fig. 7, which is likely caused by the over-

fitting on a ‘white wall’. Our method takes the 360◦ full
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sMSE: 0.129

sMSE: 0.092
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Angular Error: 68.0°
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Angular Error: 25.2°

Figure 7. Estimated reflectance and normal on our synthetic scene

‘bedroom’. The sMSE and MAE is shown at the bottom.

Φ1 Φ
1+ 1

4

Render and Refine

Reflectance 0.086 0.080 0.073

Normal 47.3 24.6 -

Table 2. Quantitative results on ablated versions of our model. We

use sMSE for reflectance and MAE for normal.

observation of the scene to jointly reason lighting, geom-

etry, and reflectance by physical insights. Therefore, our

estimation is of higher accuracy.

6.3. Testing on Real Data

Our results on the real data are shown in Fig. 8. The

top-bottom camera setting has difficulties in capturing the

ceiling and floor regions with accurate depth, as they are ei-

ther occluded by the tripod or containing severe distortions

that may lead to wrong disparities. Hence, our method fail

to estimate the normal at the part of the ceiling region in

this scene. This kind of noise hardly occurs in the synthetic

data, which does not have the occlusion problem and noises.

6.4. Ablation Study

Table 2 is the quantitative results on the ablated versions

of our method. From left to right, the columns denote the

Real Input

Reflectance

Normal

A

B

C

Inserted Objects at A

Inserted Objects at B

Inserted Objects at C

Figure 8. Results of real images. Both the reflectance and normal

are of high quality except the ceiling region, which is caused by

the occlusions and severe distortions. We relight three objects by

our illumination map at different locations. Note how the three

inserted mirror-objects correctly reflect the surroundings at each

location: the orange cloth reflected on the ‘duck’; the ceiling light

reflected on the ‘cow’; the scene reflected on the ‘teapot’.

origin RN-Net, pyramid RN-Net, and our full method with

the rendering and total variation refinement, respectively. It

shows that the pyramid structure improves reflectance and

normal. We also observe that the rendering and refinement

module can effectively reduce the noise and outliers to pro-

vide more plausible reflectance maps.

7. Conclusion

We have presented a method that takes a 360◦ panoramic

stereo as input, and jointly estimates spatially-varying and

3D coherent lighting in high-definition, reflectance, and ge-

ometry of the entire scene. Instead of using a regular cam-

era with a limited field of view, we demonstrate the advan-

tages of 360◦ input in observing and estimating the whole

scene. Our lighting model accurately reconstructs 3D illu-

mination maps, enabling mirror-like objects to be inserted

in the scene with realistic effect. We also leverage the phys-

ical constraints between the lighting and geometry to infer

both surface reflectances and normals of the environment.

Our results outperform previous state-of-the-art, both quan-

titatively and qualitatively. Results on synthetic and real

images confirm the effectiveness and practicability of our

method, by a simple 360◦ stereo setup.
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