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Abstract

This paper presents a surface normal integration method
that solves an inverse problem of local plane fitting. Sur-
face reconstruction from normal maps is essential in pho-
tometric shape reconstruction. To this end, we formulate
normal integration in the camera coordinates and jointly
solve for 3D point positions and local plane displacements.
Unlike existing methods that consider the vertical distances
between 3D points, we minimize the sum of squared point-
to-plane distances. Our method can deal with both ortho-
graphic or perspective normal maps with arbitrary bound-
aries. Compared to existing normal integration methods,
our method avoids the checkerboard artifact and performs
more robustly against natural boundaries, sharp features,
and outliers. We further provide a geometric analysis of the
source of artifacts that appear in previous methods based on
our plane fitting formulation. Experimental results on ana-
lytically computed, synthetic, and real-world surfaces show
that our method yields accurate and stable reconstruction
for both orthographic and perspective normal maps1.

1. Introduction

Reconstructing a surface from its surface normal map,
a problem called normal integration [28], is essential for
photometric 3D reconstruction, such as shape from shad-
ing [19], photometric stereo [34], and shape from polar-
ization [20]. Among all approaches to normal integra-
tion, variational-based methods have been studied for many
years [14, 16, 28], which are based on functional optimiza-
tion. The objectives are turned into linear systems by ei-
ther discretizing the functional itself [14] or its optimal
condition [28, 29] in the form of discrete Poisson’s equa-
tion. Recently, a non-variational approach based on dis-
crete geometry processing (DGP) [37] was proposed for
normal integration. DGP also solves a linear system to esti-
mate the surface. For all the three linear systems, however,

1Source code is available at https : / / github . com /
hoshino042/NormalIntegration.
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Figure 1. (Top) Typical problems in solving the linear systems for
normal integration. From left to right: The checkerboard artifact,
Gibbs phenomenon near sharp features, and sensitivity to outliers.
(Bottom) Our results from the same normal maps as above. There
is no checkerboard artifact, Gibbs phenomenon almost disappears,
and outliers hardly distort the surface.

their least squares approximate solutions suffer from several
problems. For discrete functional, a checkerboard artifact
was reported in [38], as shown in Fig. 1 top-left. Discrete
Poisson’s equation and DGP are sensitive to sharp features
or outliers, as shown in Fig. 1 top-middle and top-right.

Various remedies have been studied to improve the ro-
bustness against these artifacts. First, regularization [13, 14]
or smoothness term [38] was used to refine the reconstruc-
tion quality. However, introducing a regularization term re-
quires tuning a weighting factor, increasing the effort to ob-
tain a satisfactory result. Second, 2-norm of the residual
vector was replaced by p-norm [6] to increase the robust-
ness; however, it comes with heavier computation. Third,
normal vectors with small elevation angles was treated as
outliers [37], but the heuristic thresholding does not ensure
the robustness to outliers.

Unlike the existing approaches, we focus on the resid-
ual vector of the linear systems. Discretizing the functional
or Poisson’s equation by finite difference leads to measur-
ing the difference between the height values of 3D points.
The difference is therefore the vertical distance (i.e., the

https://github.com/hoshino042/NormalIntegration
https://github.com/hoshino042/NormalIntegration
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Figure 2. (Left) Vertical distance, i.e., distance along the viewing
direction and (Right) point-to-plane distance, i.e., distance along
the plane normal (Ours).

distance along the viewing direction) between 3D points, as
illustrated in Fig. 2 left. DGP also explicitly computes the
vertical distance in its local shaping step2. These systems
then equate the vertical distance between points to the mea-
sured gradient. Geometrically, the residual therefore repre-
sents the vertical distance from the estimated point to the
tangent plane at its neighboring point.

This paper introduces the perpendicular point-to-plane
distance (i.e., the distance along the plane normal direc-
tion) to the problem of normal integration, as illustrated
in Fig. 2 right. We formulate normal integration as an
inverse problem of local plane fitting in the camera co-
ordinates. To measure point-to-plane distances, we intro-
duce plane displacements as unknowns, in addition to the
points’ height values. From a geometric perspective, our
method simultaneously moves points on camera rays and
planes along their normal directions to minimize the sum
of squared point-to-plane distances. Thanks to the formu-
lation’s flexibility, it is straightforward to apply our method
to orthographic and perspective normal maps with arbitrary
boundaries, or to estimate height values on a different do-
main, such as the one used by DGP [37]. As a result, our
method avoids the checkerboard artifact and performs ro-
bustly against sharp features or outliers, as exemplified in
the bottom row of Fig. 1.

Our contributions are summarized as follows

• We propose a new method for the problem of normal
integration by jointly optimizing point positions and
local plane displacements in the camera coordinates.
To our knowledge, this is the first approach performing
normal integration based on point-to-plane distances.

• We show the source of the checkerboard artifact in
the central-difference discretized functional by evolv-
ing our plane fitting formulation.

• We point out that discrete Poisson’s equation and DGP
share the same intrinsic principle thus perform simi-
larly, and demonstrate that our method is more robust

2See Fig. 3 of [37].

to outliers and sharp features than these methods.

2. Related Work

Non-variational methods. Early works solve the prob-
lem of normal integration by path integration [10, 30, 35].
Another approach is to enforce surface integrability by pro-
jecting the gradient field onto the space spanned by a set
of basis functions, e.g., Fourier basis functions [9], cosine
functions [11], orthonormal vectors [21], or shapelets [23].
Recently, Xie et al. [37] proposed a discrete geometry pro-
cessing based normal integration method, which recovers a
discrete polygonal mesh directly from normal maps. Their
follow-up works dealt with discontinuity preserving [36]
and unconnected normal maps [33].

Section 5 demonstrates that the residual vector of DGP’s
linear system has the same geometric meaning as that of dis-
crete Poisson’s equation; therefore, DGP and discrete Pois-
son’s equation perform similarly.

Variational methods. Pioneered by Ikeuchi [18] and de-
tailed by Horn and Brooks [16], the problem of normal in-
tegration has been formulated in a variational manner by
optimizing a functional. Agrawal et al. [1] proposed a gen-
eral framework to construct a range of solutions to the func-
tional. Instead of minimizing the least squares functional,
different kinds of regularizations were studied to increase
robustness, like L1 norm [6, 27]. Depth measurements were
also used as prior knowledge of the surface [2, 17, 25].
How to better discretize the functional is also an essen-
tial issue in practice [3, 28]. Further, boundary conditions
should be carefully handled [8]. A typical method for the
discretization is to vectorize the height map and to approx-
imate the partial derivative by finite difference. Zhu and
Smith [38] used 2D Savitzky-Golay filters to approximate
partial derivative. Harker and O’Leary [12, 14] discretized
the functional into a Sylvester equation without vectorizing
the height map. Our method’s critical difference from the
variational methods is that our linear system’s residual vec-
tor measures the point-to-plane distance.

Two methods have been studied to reconstruct surfaces
from perspective normal maps. First, Durou et al. [7, 8, 28]
integrated the perspective normal map by taking the loga-
rithm of height values. They then solved the discrete Pois-
son’s equation similar to the orthographic case, and expo-
nentiate the result to recover the desired height map. Sec-
ond, Nehab et al. [25], as well as Zhu and Smith [38], de-
rived the relation between the perspective normal map and
the height map based on that the normal vector should be
perpendicular to the surface tangent vectors. To our knowl-
edge, our inverse plane fitting formulation provides a third
alternative to solve the problem of normal integration in per-
spective case.



3. Problem Statement
We first briefly review the definition of and conventional

methods for the problem of normal integration. A nor-
mal map n : Ωn → S2 ⊂ R3 records the surface orien-
tation at a discrete pixel coordinate u = [u, v]> ∈ Ωn,
where the domain Ωn ⊂ {1, . . . ,H} × {1, . . . ,W} is de-
fined by the image of dimension H × W . Let p(u) =
[x(u), y(u), z(u)]> be the 3D surface point and n(u) =
[nx(u), ny(u), nz(u)]> ∈ S2 be the unit surface normal
vector corresponding to the pixel coordinate u. The prob-
lem of normal integration is to reconstruct the height map
z(·) from the normal map n(·).

Variational methods formulate normal integration as
height/shape from gradient, i.e., recovering a height map
from a measured gradient field [p, q]>. Under orthographic
projection,

p = −nx

nz
, q = −ny

nz
. (1)

We refer the reader to [28] for detailed derivation of [p, q]>

under different types of projections. Variational methods
then find the optimal surface by minimizing the following
functional

J (z) =

∫∫
Ωn

(∂uz − p)2 + (∂vz − q)2 du dv, (2)

where ∂u· and ∂v· denote partial derivatives of the function
z : Ωn → R along u and v axes on the image plane. Ap-
plying the Euler-Lagrange equation to the functional Eq. (2)
leads to the necessary optimal condition

∆z = div(p, q) = ∂up + ∂vq, (3)

which is in the form of Poisson’s equation. Equations (2)
and (3) consider the problem of normal integration on a
continuous domain. As the normal map is measured on
a discrete domain, previous methods either discretize the
functional [14] or Poisson’s equation [28].

We show in Section 5 that these conventional discretiza-
tion methods minimize a residual by measuring the vertical
distance along viewing directions. On the other hand, our
method minimizes the point-to-plane distance along surface
normal directions.

4. Normal Integration via Inverse Plane Fitting
Our main idea is to approximate the surface locally by

planes perpendicular to normal vectors. We consider the
form of a plane equation in a 3D space as

p>n + d = 0, (4)

where n ∈ S2 is the unit normal vector perpendicular to
the plane, and d is the distance from the coordinate origin

to the plane along the plane’s normal direction. We will call
d the plane displacement throughout this paper. All points
p ∈ R3 on the plane should satisfy Eq. (4).

Suppose we are given a set of normal vectors {n(u)}
over the pixel coordinates. For each normal vector n(u),
there is a family of planes parallel to the tangent plane, pa-
rameterized by its displacement d(u) as

p>n(u) + d(u) = 0. (5)

As the surface is locally approximated by planes, we en-
force nearby points of the point p(u) that correspond to
pixel u to lie on a plane as

min
∑

p∈N (p(u))

(p>n(u) + d(u))2, (6)

where N (p(u)) denotes the set of nearest neighbor points
to p(u). Equation (6) is exactly the same as PlaneSVD [22],
a method for estimating normals from known 3D points by
fitting planes. In the problem of normal integration, normal
vectors n are given, and the 3D points p are to be estimated,
which is why we term our method as “inverse plane fitting”.
To recover the 3D points, we need to jointly consider plane
equations at all points as

min
p,d

∑
u∈Ωn

∑
p∈N (p(u))

(p>n(u) + d(u))2. (7)

To solve this optimization, we introduce two assump-
tions. First, we will assume that the 2D projections of all
3D points on the image plane are known. This constraint
reduces the degree of freedom of points from 3 to 1, i.e.,
all points can only move along known camera rays. We can
then parameterize a point p as p(z;up), where up is the
known projection of the 3D point on the image plane, and
z is the 3D point’s unknown position on the camera ray.
Second, we will assume that the closeness relationship be-
tween 3D points remains the same for their projections on
the image plane. That is,

N (p(u)) = {p(z;up) | up ∈ N (u)}. (8)

This assumption holds for continuous surfaces. With the
two assumptions, the objective Eq. (7) becomes

min
z,d

∑
u∈Ωn

∑
up∈N (u)

(p(z;up)>n(u) + d(u))2. (9)

There is still one issue left for optimizing Eq. (9),
namely, definition of the set of up, which reflects the points
of interest we will solve. We show two design options in
this paper. The first obvious choice is to let {up} = Ωn,
which is the same as conventional variational methods. The
second choice is to place up a half-a-pixel step from u in
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Figure 3. (Left) A local five-point stencil in domain Ωn on the
image plane. We enforce all points projected onto this stencil to
lie on a plane with the center normal vector and an unknown dis-
placement. (Right) The domain Ωz used by DGP [37], denoted as
circles. Each pixel in Ωn has four neighbor pixels in Ωz .

Ωn, as illustrated in Fig. 3 right. The second one is the same
as that used by DGP [37], and we denote it as Ωz .

To retrieve the nearest neighbor projections of u, we use
ball query with radius 1. In the case of {up} = Ωn, this
query results in a five-point stencil for pixels whose four
neighbor pixels are also in Ωn, as shown in Fig. 3 left. We
use a subscript “oo” to indicate the center pixel u, its cor-
responding 3D point p, and its height value z. Subscripts
“-o”, “+o”, “o+”, “o-” are used for its left / right / upper /
lower counterparts in the local five-point stencil. For bound-
ary or corner pixels, N (u) has four or three elements, re-
spectively. The inner summation in Eq. (9) now becomes∑

up∈N (u)

(p(z;up)>n(u) + d(u))2

= ‖[poo po+ po- p+o p-o]>n(u) + d(u)1‖22,
(10)

where 1 is an all-ones vector.
In the case of {up} = Ωz , N (u) of all pixels has four

elements, no matter whether it is a boundary pixel or not.
Similarly, the inner summation in Eq. (9) becomes∑

up∈N (u)

(p(z;up)>n(u) + d(u))2

= ‖[p++ p+- p-+ p- -]
>n(u) + d(u)1‖22,

(11)

From now on, we will call five-point and four-point plane
fitting for the case {up} = Ωn and {up} = Ωz , respec-
tively.

4.1. Solution Method

Orthographic case. Under a (scaled) orthographic pro-
jection or weak perspective projection, a surface point
p(z;up) is projected onto the image plane with a scaling
along xy-axes, i.e., p(z;up) = [hu>p , z]>. The scale factor
h transfers the camera’s xy-coordinates to the pixel coordi-
nates; in the context of finite difference, h is called the step

size. Without loss of generality, we will assume h = 1 in
this paper for notational simplicity. Inserting the point rep-
resentation into plane equation of Eq. (10) (inner part of the
norm) and moving known terms to the right-hand side, we
obtain the system of linear equations at one pixel as

 nz 1
nz 1

nz 1
nz 1

nz 1

 zoo
zo+
zo-
z+o
z-o
d

 = −


u>oo

u>o+

u>o-

u>+o

u>-o

 [ nx
ny ] . (12)

Stacking equations at all pixels results in a sparse, overde-
termined linear system A [ zd ] = b. The number of rows of
A or the number of all plane equations is

∑
u∈Ωn

|N (u)|,
which is close to 5|Ωn|; the number of columns of A is
2|Ωn|, as z and d are stacks of |Ωn| height values and plane
displacements, respectively. We can derive a least squares
approximate solution by minimizing the following residual

min
z,d
‖e‖22 s.t. e = A [ zd ]− b. (13)

Similarly, if we work on the domain Ωz , we can derive
the same plane equation as Eq. (12) but with four equa-
tions at each pixel. The coefficient matrix A’s dimension
is 4|Ωn| × (|Ωn| + |Ωz|), as there are |Ωn| displacements
and |Ωz| height values.

Perspective case. Suppose a perspective pinhole camera
with intrinsics K projects a surface point p(z;up) onto the
image plane at up. Its back-projection is a camera ray con-
taining p(u) with an unknown scale z as

p(z;up) = zK−1ũp ≡ zp̃, (14)

where ũp = [u, v, 1]> is up in homogeneous coordinates, p̃
is the back-projected point K−1ũp. In the case of {up} =
Ωn, inserting Eq. (14) into the plane equation of Eq. (10)
yields five equations at one pixel as

n>p̃oo 1

n>p̃o+ 1

n>p̃o- 1

n>p̃+o 1

n>p̃-o 1


 zoo

zo+
zo-
z+o
z-o
d

 = 0 . (15)

In the case of {up} = Ωz , there are four similar equations
at each pixel. Stacking all equations yields a sparse, ho-
mogeneous system A [ zd ] = 0. The dimension of A is the
same as that in the corresponding orthographic case. Then
our objective using least squares becomes

min
z,d
‖e‖22 s.t. e = A [ zd ] . (16)

The non-trivial solution to Eq. (16) is the right-singular vec-
tor corresponding to the smallest singular value of A3.

3See, for example, A5.3 of [15] for a detailed proof.



Rank, ambiguity, and solver. The system matrix A is
rank deficient in the orthographic case and has full-rank in
the perspective case. In orthographic case, nullity(A) =

1; the null vector is
[

1
−n◦−1

z

]
, where n◦−1

z is Hadamard
inverse of the stacking vector of all nz . The null vector can
be verified in Eq. (12), and implies an offset ambiguity in
the solution. Geometrically understanding, if all points are
moved by 1 unit along the camera rays, the best fit planes
are moved by −n−1

z unit along planes’ normal directions.
We used LSQR [26] to solve Eq. (13) in this paper. When
the size of the system matrix A becomes large, solving the
normal equation of Eq. (13) by multigrid methods [4] can
be more efficient.

In perspective case, the solution is up to a scale ambigu-
ity as we are solving a homogeneous system Eq. (16). The
system matrix A can be full-rank because the residual of
plane fitting never achieves 0 unless the surface is a plane.
This intuition is consistent with our observation that A is
only rank-deficient when the surface is a plane.

To efficiently find the solution to Eq. (16), we can com-
pute the eigenvector corresponding to the smallest eigen-
value of A>A, as A’s right singular vectors are A>A’s
eigenvectors. We used ARPACK’s implementation [24] of
implicitly restarted Lanczos method [32], which is efficient
at finding a few eigenvectors of a large sparse matrix.

5. Robustness Analysis and Comparison
This section analyzes three previous orthographic nor-

mal integration methods in the language of our plane fit-
ting formulation: Discrete functional [14], discrete Pois-
son’s equation [29], and DGP [37]. We begin by describing
the source of the checkerboard artifact that appears with
central-difference-discretized functional. We then show the
residual vectors of the discrete Poisson’s equation and DGP
share the same geometric meaning.

Discrete functional. Central difference is typically used
to discretize the functional Eq. (2), yielding two equations
at one pixel location as{

1
2 (z+o − z-o) = p = −nx

nz
1
2 (zo+ − zo-) = q = −ny

nz

. (17)

Solving the linear system based on Eq. (17) causes the
checkerboard artifact, as shown in Fig. 4 (e). One specu-
lation about the source of the artifact is because Eq. (17)
is independent of the center point zoo [38]. We argue that
it is in fact due to the loss of constraints between the left /
right and upper / lower point pairs. And as long as we spec-
ify their relations, the checkerboard artifact can be avoided
even if there is no constraint using the center point.

To validate our argument, we gradually manipulate our
five-point plane fitting equations Eq. (12) to the discrete

(a) Eq. (12) (b) Eq. (18) (c) Eq. (19) (d) Eq. (20) (e) Eq. (17)

high

low

high

0

Figure 4. An evolution from plane fitting to central-difference dis-
cretized functional. Each column shows the estimated surface and
the absolute difference map. Central difference implicitly allows a
local offset in each five-point stencil (i.e., fit two parallel planes at
one pixel), introducing the checkerboard artifact.

functional Eq. (17). We first discard the plane constraint
on the center point poo in Eq. (12), yielding four equations
at one pixel as

(u− 1)nx + vny + z-onz + d = 0 (left)
(u + 1)nx + vny + z+onz + d = 0 (right)
unx + (v + 1)ny + zo+nz + d = 0 (upper)
unx + (v − 1)ny + zo-nz + d = 0 (lower)

. (18)

Equation (18) enforces four points on one plane, but now
let us relax the constraint as

(u− 1)nx + vny + z-onz + d = 0 (left)
(u + 1)nx + vny + z+onz + d = 0 (right)
unx + (v + 1)ny + zo+nz + d′ = 0 (upper)
unx + (v − 1)ny + zo-nz + d′ = 0 (lower)

, (19)

which means we fit two parallel planes for the four points.
In other words, there could be a local offset (i.e., d 6= d′) be-
tween the left / right and upper / lower point pairs. However,
we can derive the same equations from Eqs. (18) and (19) if
we take the difference between the left and right, upper and
lower point 4 {

nz

2 (z+o − z-o) = −nx

nz

2 (zo+ − zo-) = −ny

. (20)

Dividing both sides by nz , we then arrive at the discrete
functional Eq. (17).

Figure 4 displays the estimated surfaces by the lin-
ear systems based on the equations in this evolution.
From Fig. 4 (a) to (b), we discard the constraint on the
center point. But it does not create the checkerboard ar-
tifact, and the reason is that the four neighbor points are
still enforced on the same plane. From Fig. 4 (b) to
(c), the checkerboard artifact occurs, implying that relax-
ing the constraint from Eq. (18) to Eq. (19) introduces the

4This formulation is the same as Zhu and Smith’s method [38] in the
orthographic case with central-difference-based discretization.



checkerboard artifact. Further, the checkerboard artifact be-
tween Fig. 4 (c) and (d) is indistinguishable, validating that
central difference implicitly allows a local offset between
the left / right and upper / lower point pairs in each five-point
stencil. The checkerboard artifact in Fig. 4 (d) is weaker
than that in (e) because Eq. (20) transfers the vertical dis-
tance to the distance along plane normal direction (multi-
plied by nz). This phenomenon further validates that mea-
suring distance along normal directions (Eq. (20)) is better
than that along viewing directions (Eq. (17)).

Discrete Poisson. Poisson’s equation (3) is typically dis-
cretized at a five-point stencil [1, 8, 28] as

z+o + z-o + zo+ + zo- − 4zoo =
p+o − p-o

2
+

qo+ − qo-

2
.

(21)

Quéau et al. [29] point out it is equivalent to consider all
forward / backward differences at one pixel{

z+o − zoo = poo

zoo − z-o = poo

{
zo+ − zoo = qoo

zoo − zo- = qoo
. (22)

The least squares approximate solutions of two linear sys-
tems constructed by stacking Eq. (21) or (22) are the same5.
We will use Eq. (22) to demonstrate the geometric meaning
of the residual of discrete Poisson’s equation.

Consider a center and its right-hand point lying on the
tangent plane of the center point{

unx + vny + ẑoonz + d = 0 (center)
(u + 1)nx + vny + ẑ+onz + d = 0 (right)

. (23)

We denote by ẑ to stress they are the height values of the
intersections of camera rays and the tangent plane, not the
ones by solving the linear system. Taking the difference
between the two equations yields

ẑ+o − ẑoo = −nx

nz
= poo, (24)

which reveals that the gradient poo is equal to the vertical
distance between two neighbor intersections. We can derive
similar equivalence for other pixel pairs in the five-point
stencil and plug them into Eq. (22) as{

z+o − zoo = ẑ+o − ẑoo

zoo − z-o = ẑoo − ẑ-o

{
zo+ − zoo = ẑo+ − ẑoo

zoo − zo- = ẑoo − ẑo-
.

(25)

These equations imply that discrete Poisson’s equation en-
forces the equality between the vertical distance of esti-
mated neighbor points and neighbor tangent intersections.

natural boundary outlier
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Figure 5. Poisson equation v.s. line fitting on a 2D semi-circle.
(Left) The boundary point has a large tangent slope (dashed line),
deviating estimated points to the tangent along viewing direction.
(Right) We rotated one normal vector as an outlier, whose tangent
line is shown as the dashed line. Poisson’s equation performs more
sensitive to the outlier than our line fitting.

The residuals are then the vertical distances from the esti-
mated point to the tangent at its neighbor points.

To demonstrate why this residual is sensitive to natural
boundary or outliers, we compared Poisson’s equation and
plane fitting on a 1D function in Fig. 5. Plane fitting de-
grades to line fitting with the line equation xnx+yny +d =
0. We used a circle function y =

√
1− x2 for x ∈

[−1, 1] as the ground truth surface. In Fig. 5 left, we
sampled 9 normal vectors at points evenly distributed in
[−0.98, 0.98] and estimate the height values of the 9 points.
The two boundary points are close to the surface’s natural
boundary, so the corresponding tangent has a large slope.
The points estimated by discrete Poisson’s equation devi-
ate largely toward the tangent along viewing direction. The
points estimated by line fitting, on the other hand, are close
to the surface since the point-to-plane distance would not
change largely by moving them on the camera rays.

In Fig. 5 right, we evenly sampled 9 points in [−0.5, 0.5],
i.e., there is no effect of the natural boundary. However,
we rotated one normal vector as an outlier, whose tangent
line is shown as the dashed line. Due to the large vertical
distance introduced by the outlier normal vector, the points
estimated by discrete Poisson’s equation deviate more to-
wards the tangent than line fitting.

Discrete Geometry Processing (DGP). We will show
that the residual of DGP [37] is essentially the same as that
of discrete Poisson’s equation, but on domain Ωz . DGP con-
sists of two steps: (1) local shaping and (2) global blending.
Local shaping defines a local 3D coordinate centered at uoo
on the image plane, and then computes the vertical distance
from a neighbor pixel to the plane with normal vector noo
passing through uoo (i.e., d = 0). For example, the vertical

5Equation (21) should be modified for boundary pixels [3].



distance ẑ
(local)
++ of the upper-right pixel u++ is computed as

0.5nx + 0.5ny + nz ẑ
(local)
++ = 0

→ ẑ
(local)
++ = −0.5nx + 0.5ny

nz
.

(26)

Global blending then equates the difference between a point
and the average of its four neighbor points to the local ver-
tical distance as

z++−
z++ + z+- + z-+ + z- -

4
= ẑ

(local)
++ . (27)

The vertical distance in the local coordinates is the same
as the vertical distance in the camera coordinates, i.e.,
ẑ

(local)
++ = ẑ++ − ẑoo. Let zoo be the average of four neighbor

height values, then Eq. (27) can be simplified and all four
equations at one pixel location now read{

z++ − zoo = ẑ++ − ẑoo

z+- − zoo = ẑ+- − ẑoo

{
z-+ − zoo = ẑ-+ − ẑoo

z- - − zoo = ẑ- - − ẑoo
.

(28)

This form is similar to discrete Poisson’s equation
in Eq. (25), except that the height values are defined on the
domain Ωz . Therefore the residual of DGP has the same
geometric meaning as that of discrete Poisson’s equation.

Figure 6 compares discrete Poisson’s equation, DGP,
and our methods on two analytically computed normal
maps; see our supplementary material for the strategy
of computing the surface height/normal maps and adding
noise/outliers. As there is a global offset ambiguity in the
estimated height maps, we first found an optimal offset be-
tween the estimated and the ground truth height maps. We
then computed the Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) as evaluation metrics. Dis-
crete Poisson’s equation and DGP show an indistinguish-
able error pattern and achieve close RMSE / MAE. This
phenomenon validates our understanding that the residual
vectors of DGP and discrete Poisson’s equation have the
same geometric meaning. On the other hand, our method
performs more robustly to outliers and sharp features.

6. Comparison of Perspective Methods
Figure 7 compares state-of-the-art perspective normal in-

tegration methods on an analytically computed, synthetic,
and real-world normal map. We computed the ground truth
normal and height map of a SPHERE by a perspective cam-
era model. We used Mitsuba6 to render a normal map and
the corresponding height map of Stanford BUNNY. We then
added Gaussian noise to and randomly selected 1% normal
vectors as outliers in SPHERE and BUNNY’s normal map.

6Mitsuba Renderer. https://www.mitsuba-renderer.org/
index_old.html, last accessed on November 16, 2020.

GT shape &
normal map Poisson [29] Ours

five-point DGP [37] Ours
four-point

high

low

high

0
5.30 / 3.97 0.86 / 0.69 5.27 / 3.94 0.76 / 0.61 ×10−2

high

low

high

0
8.32 / 5.21 3.56 / 1.41 8.24 / 5.21 2.79 / 0.64 ×10−1

Figure 6. Reconstructed shape and its absolute difference map
from (Top) the normal map with Gaussian noise and 1% outliers of
anisotropic Gaussian surface [14] and (Bottom) a noise-free nor-
mal map of sphere with background padded. Discrete Poisson’s
equation and DGP shows an indistinguishable error pattern and
close RMSE / MAE (numbers below the error maps). The shapes
from discrete Poisson’s equation or DGP are distorted by outliers,
and Gibbs phenomenon appears near sharp features.

For the real-world surface, we used the normal map esti-
mated by the state-of-the-art photometric stereo method [5]
on the object HARVEST in DiLiGenT benchmark [31]. See
our supplementary material for the comparison on all ob-
jects in DiLiGenT.

To better reflect the linear systems’ features, we only
looked at the least squares approximate solutions of com-
pared methods without any regularization or smoothness
term. As there is a global scale ambiguity in the esti-
mated height maps, we found an optimal scale between
the estimated and ground truth height map before comput-
ing RMSE and MAE. We applied the exponentiation [28]
to the discrete functional [14] and discrete Poisson’s equa-
tion [29]. It is observed that the exponentiation amplifies
the checkerboard artifact of discrete functional and sensi-
tivity to outliers of discrete Poisson’s equation. Spikes oc-
cur in both methods. For Zhu and Smith’s method [38], we
used two variants as the discretization of partial derivative:
Central difference and the third-order Savitzky-Golay (SG)
filter.Zhu and Smith’s method [38] performs robustly to out-
liers. However, a weaker checkerboard artifact exists in the
central difference case. Moreover, a higher-order SG filter
does not refine the reconstruction quality compared to cen-
tral difference. Instead, it introduces severer high-frequency
noise7. On the other hand, our methods perform stably on

7We empirically found it is the SG smoothing filter that plays a crucial
role in refining the visual quality in Zhu and Smith’s method [38].

https://www.mitsuba-renderer.org/index_old.html
https://www.mitsuba-renderer.org/index_old.html


GT shape &
noisy normal map
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discrete functional

Quéau et al. [29]
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Zhu and Smith [38]
w/ central difference

Zhu and Smith [38]
w/ SG filter
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five-point on Ωn

Ours
four-point on Ωz

high

low

high

0
11.56 / 6.07 4.24 / 1.48 0.54 / 0.38 1.67 / 1.33 0.35 / 0.20 0.39 / 0.19 ×10−2

high

low

high

0
6.02 / 3.65 4.66 / 2.77 3.77 / 1.49 3.77 / 1.57 3.92 / 1.58 3.75 / 1.49 ×10−3

high

low

high

0
13.38 / 11.24 13.10 / 11.14 12.90 / 11.11 12.91 / 11.11 12.92 / 11.13 12.91 / 11.11 ×1

Figure 7. Visual comparison of perspective normal integration methods on normal maps of analytically computed SPHERE, synthetic
BUNNY, and real-world HARVEST. Every two rows show the ground truth & estimated surface, the normal map as well as the absolute dif-
ference map (between ground truth and estimated height map). The two numbers underneath error maps are RMSE and MAE, respectively.
We add Gaussian noise to and randomly select 1% normal vectors as outliers in SPHERE and BUNNY’s normal maps.

all objects. The effect of outliers is hardly observed, and
systematic high-frequency noise never occurs.

7. Conclusion

In this paper we presented, analyzed, and evaluated an
inverse plane fitting approach to the problem of normal inte-
gration. We formed a linear system that minimizes the sum
of squared point-to-plane distances instead of conventional
vertical distances. We showed the source of the checker-
board artifact in the discrete functional-based approach. We
also provided a geometric interpretation of the sensitivity
to outliers or the sharp features of discrete Poisson’s equa-

tion and DGP. Our method is straightforward, robust against
outliers and sharp features, hyper-parameter free, yet based
on least squares. We are interested in further studying dis-
continuity preserving normal integration and depth normal
fusion based on our formulation.
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