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Semi-Calibrated Photometric Stereo
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Abstract—While conventional calibrated photometric stereo methods typically assume that light intensities are identical and sensor
exposure is constant across observed images taken under varying lightings, these assumptions easily break down in practical settings
due to individual light bulb’s characteristics and limited control over sensors. In this paper, we study the effects of non-uniform light
intensities and sensor exposures across observed images. In order to explicitly model these non-uniformities, we define “semi-calibrated”
photometric stereo framework that light directions are assumed to be known or calibrated, but light intensities and exposures are
variables to be estimated. Then, we propose methods for accurately determining surface normal in "semi-calibrated” photometric stereo
framework. We consider how the new proposed concept, “semi-calibrated” photometric stereo, differs from conventional "uncalibrated”
and “calibrated” photometric stereo and looks at its practical usefulness. In addition, we show that our methods are advantageous for
general photometric stereo settings, where auto-exposure control is desirable. We compare our method with conventional Lambertian
calibrated photometric stereo and robust photometric stereo methods as well as uncalibrated photometric stereo, and the experimental
result shows superior accuracy of our method in this practical circumstance.

Index Terms—Photometric stereo, Light intensity, Exposure, Surface normal

1 INTRODUCTION

ON-UNIFORM light intensities and exposures across ob-
Nserved images are a practical and common circumstance
in data acquisition for photometric stereo that uses multiple
images under distinct light directions. For example, different
light bulbs with different intensity characteristics may be used
for illuminating a scene. Even with identical light bulbs, due to
that scene radiance is determined by surface normal and light
directions, auto-adjusted sensor exposure is desirable depending
on the light directions to avoid over-/under-exposures. Therefore,
the capability of properly handling varying light intensities and
exposures across observed images is an important feature for
making photometric stereo more practical.

In the Lambertian image formation model, a measured inten-
sity m is written as
M = Eipjanlz‘, ()
where ¢ and j are indices of light direction and pixel location,
Li,n; € R3*! are unit vectors of light direction and surface
normal, p; € R is a Lambertian diffuse albedo, and E; € R
is a light source intensity. In a matrix form for representing all
pixels and light directions at a time, it can be written as

M =ELN'P, )

where M € R/ *? is an observation matrix, E is an f x f diagonal
light intensity matrix, L € RF*3 is a light direction matrix,
N € RP*3 is a surface normal matrix, P is a p X p diagonal
diffuse albedo matrix, and f and p are the number of images and
pixels, respectively. Conventional photometric stereo [1]] assumes
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that light source intensities are identical across images, where
the matrix FE becomes a scaled identity matrix (E = el), and
computes albedo-scaled surface normal B(= P " IN) by

eBT =L'M, 3)

up to a scale ambiguity e, where the superscript T indicates a
generalized inverse when [ > 3.

Clearly, when the light source intensities are non-uniform or
camera exposures vary across images, the assumption E = el
does not hold, but instead its diagonal elements have individual
scales. When this non-uniformity is present, the surface normal
estimates by Eq. (2) naturally becomes biased by greater scales
as illustrated in Fig. [I] While there are recently various robust
estimation techniques used for photometric stereo [2], [3], [4],
5], [6l, because the effect of non-uniform E neither increases
the rank of the observation matrix nor sparsifies outliers, robust
techniques such as rank minimization or £g-norm minimization
techniques cannot resolve this issue. In the rest of the paper, we
collectively call this problem setting, non-uniform light intensities
and exposures across images, a varying light intensity condition,
because they are both considered intensity scaling on individual
images.

Under varying light intensity condition, as well as light di-
rection, light intensity is the factor which is pre-calibrated or
estimated with surface normal. Depending on whether the direc-
tions and intensities of light sources are calibrated, photometric
stereo problem can be categorized into four cases: knowing
both, not knowing both, and knowing only one of them. In this
paper, we focus on a case that light directions are assumed to
be known or calibrated, but light intensities and exposures are
variables to be estimated. We call this case as “semi-calibrated”
photometric stereo. We considers a method to effectively solve
”semi-calibrated” photometric stereo under varying light intensity
condition. The problem that we deal with in this paper is a bilinear
problem written as following.
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Fig. 1: (a) Conventional photometric stereo setting where constant light intensities and exposures are used, (b)(c): Varying lighting
intensity/exposure conditions. Estimated surface normal are biased toward brighter light source or images captured with longer

exposures with a conventional solution method.

Problem (Semi-calibrated photometric stereo under varying
light intensity condition). Given observations M and light
directions L, estimate a diagonal light intensity matrix E and
an albedo-scaled surface normal matrix B from the following
relationship:

M=ELB'. “)

We first show that there exists a linear closed-form solution
method, which simultaneously estimates scales of light intensities
(or exposures) E and albedo-scaled surface normal B. We call
this method a linear joint estimation method. This method is
straightforward to implement; however, inefficient in terms of
computation time and memory consumption. We then introduce a
factorization based method for determining only surface normal B
in Eq. without being affected by E. It bypasses the estimation
of E using algebraic distance minimization (or, cross product
minimization) by making the problem independent of vector
magnitudes. Next, we show that this bilinear problem can be
efficiently solved by an alternating minimization technique that
determines EE and B in each step. Finally, in order to handle
non-Lambertian components, we introduce robust alternating min-
imization method. We discuss details and characteristics of each
method later in this paper.

We further show that our method is advantageous in improving
signal-to-quantization-noise ratio (SQNR) in comparison to a stan-
dard photometric stereo method when an auto-exposure control is
used, and as a result more accurate surface normal estimates can
be obtained. Experimental results show the effectiveness of the
proposed method in practical settings. In this paper, we assumes
a directional light setting where radiance from a light source to
a scene is constant except for shadowing, i.e., spatially varying
incident radiance within a scene is not assumed.

A shorter version of this work appeared in [7|]. This paper
extends our previous work with defining ”’semi-calibrated” photo-
metric stereo, and additional experimentations. Also, the L1-norm
based alternating minimization algorithm is newly introduced. To
summarize, our contributions are as follows:

1)  We introduce a concept of ”semi-calibrated” photometric
stereo under varying light intensity condition, and analyze
differences with uncalibrated and calibrated photometric

stereo.

2) In order to handle non-Lambertian components, we intro-
duce robust alternating minimization method.
3) We evaluate our methods on new photometric stereo

dataset, and demonstrate effectiveness of proposed meth-
ods.

2 RELATED WORKS

Photometric stereo was first introduced by Woodham [1]] in 1980’s
for determining surface normal from images taken under known
and varying light directions with a Lambertian reflectance assump-
tion. After Woodham’s work, there have been various techniques
proposed for making photometric stereo more practical. Their
main focuses are to relax the assumptions of (1) calibrated light
sources and (2) Lambertian image formation model.

The first class of the methods, called uncalibrated photometric
stereo, tries to eliminate the need for calibrating light directions.
When the light directions are unknown, it is understood that the
solution can be obtained up to a 3 X 3 linear ambiguity [§]]. If
the integrability [9] of the surface is assumed, it has been shown
that the linear ambiguity can be reduced to a generalized bas-
relief (GBR) ambiguity [[10], which only has three parameters. To
fully resolve these ambiguities, various types of external clues
have been used. For example, there are methods that use the
entropy of albedo distributions [11]], specular observations [12],
shadows [[13]], and groups of color and intensity profiles [[14]]. Our
problem setting has a similarity to the uncalibrated photometric
stereo scenario in that we relax the assumptions of known light
intensities and constant light intensity across varying light direc-
tions. And none of the previous uncalibrated photometric stereo
works can effectively solve the problem.

The second class of the methods tries to make photometric
stereo applicable to non-Lambertian scenes. There are methods
that use more sophisticated reflectance models than Lambertian re-
flectance model, such as the works that use Torrance-Sparrow [[15]],
[16], Cook-Torrance [17]], Phong [18]], Blinn-Phong [19]. More
recently, Shi et al. [20] propose a bi-polynomial reflectance model
that produces successful results for non-Lambertian diffusive
scenes. There are approaches that use robust estimation techniques
by treating non-Lambertian reflectances and shadows as outliers.
In [2], the robustness against outliers is achieved by capturing
hundreds of input images coupled with Markov Random Field
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(MRF) to maintain neighborhood smoothness. Verbiest and Van
Gool [3] use a confidence approach to reject outliers in input im-
ages of photometric stereo. Wu et al. [4]] proposed a robust method
based on low-rank matrix factorization. Oh er al. [5] introduced a
partial sum of singular values for rank minimization, and showed
good performance in photometric stereo. Ikehata ef al. [21] used
a sparse Bayesian regression for effectively neglecting sparse
outliers (specularities and shadows). While these techniques are
effective, they are built upon the assumption of constant light
intensity, and cannot directly address the issue of varying light
intensities and exposures.

3 CATEGORIZATION OF PHOTOMETRIC STEREO

In this section, we categorize Lambertian photometric stereo into
four cases depending on whether the directions and intensities
of light sources are known. Also, we study effectiveness of each
approach for non-uniform light intensities and exposures across
images.

3.1 Calibrated Case

Usually, in conventional calibrated photometric stereo, light di-
rections L are pre-calibrated while constant intensities across
images are assumed. As a result, estimated surface normal can
be globally biased toward brighter light source under non-uniform
light intensities and exposures across images. In order to remove
distortion from varying light intensity condition, light intensities
E can be also pre-calibrated. However, sophisticated operations
using Lambertian sphere are required to calibrate intensities of
light sources. Taking into consideration that calibration using the
chrome spheres to obtain directions of light sources, calibrating
intensities of light sources using another Lambertian sphere in
advance means that two different pre-calibration with two different
types of spheres are required. It is very inefficient and makes
photometric stereo impractical.

3.2 Uncalibrated Case

To make photometric stereo practical, in uncalibrated photometric
stereo, surface normal, albedo, light direction and intensity are
directly estimated from captured images without calibrating light
directions and intensities in advance. Solutions of uncalibrated
photometric stereo can be obtained via matrix factorization:

M=SBT, Q)

where S and B are biased intensity-scaled light direction and
albedo-scaled surface normal, respectively. With an arbitrary 3 x 3
non-singular matrix H, Eq. (5) can be re-written as

M = (SH)(H'BT). (6)

Since any non-singular 3 x 3 matrix H satisfy Eq. (6, there
is no unique solution for surface normal. Therefore, previous
approaches [S8]I, [9], [10], [T1], [12]I, [13], [[14]] utilize prior knowl-
edge about albedo or surface normal. In examples that satisfy
prior assumptions, light direction and intensity are obtained as
well as surface normal and albedo. However, when assumptions
are violated, all of estimates become incorrect. In other words,
uncalibrated photometric stereo lacks of generality even though it
has benefits of practicality.

3.3 Hayakawa Case

As mentioned above, we touch cases that one of light directions
and intensities is known. Firstly, we think of light intensity
calibration without knowing light directions. As reported in [_8|] by
Hayakawa et al., if relative intensities across more than 6 frames
are known, 3 X 3 non-singular matrix H can be computed by
solving following relationship, HSHJ’ — F where E is known
relative intensities. However, it depends on a few known intensities
of some frames, and is vulnerable to errors and outliers. Also, as
discussed later section Sec. [6] light intensity calibration is not
easy as light direction calibration. To prevent confusion, we call
this case as Hayakawa case.

3.4 Semi-calibrated Case with Known Light Direction

In this paper, we focus on a case that light directions are known
or calibrated, but light intensities and exposures are variable to
be estimated with albedo-scaled surface normal. We call it as
”semi-calibrated” photometric stereo that can effectively handle
non-uniform light intensities and sensor exposures across im-
ages. It is more practical than calibrated case and more general
than uncalibrated photometric stereo. Also, unlike calibrated and
Hayakawa cases, ’semi-calibrated” photometric stereo is suitable
to auto-adjusted sensor exposure function for avoiding over-
/under-exposures because intensities of each frame are not fixed
in advance. So far, since there is no studies that explictly focus on
”semi-calibrated” photometric stereo under varying light intensity
condition, we propose four solution methods in Sec. [

4 SEMI-CALIBRATED PHOTOMETRIC STEREO UN-
DER VARYING LIGHT INTENSITY CONDITIONS

As discussed in Eq. @) and Sec. we are interested in
determining albedo-scaled surface normal B with unknown non-
uniform scalings of light intensities or exposures E. In a least-
squares framework, the problem can be written as

{E*,B*} = ar]%rginHM —ELB'|2 7

given the observations M and light directions L.

We first present a linear estimation method that simultaneously
estimates B and E in Sec. [£.]1 We then describe a factorization
based method in Sec. 2] which bypasses the estimation of
unknown scalings E. Then, we describe an efficient alternating
minimization method in Sec. @] Finally, we introduce robust
alternating minimization method to handle non-Lambertian com-
ponents.

4.1 Linear joint estimation method

The original form M = ELBT can be re-written as E-1M =
LB, because E is always invertible as it is a positive diagonal
matrix. Given known M and L, it can be viewed as a variant of a
Sylvester equation [22]:

E-'M-LB' =o. (8)

By vectorizing unknown variables E~! and BT, Eq. can be
written as

[diag(my)] - - |diag(mp)]TE_11

9
—(I,® L)vec(BT) =0, ©)



IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. XX, NO. X, MONTH YEAR 4

where diag(-), vec() and ® are diagonalization, vectorization,
and Kronecker product operators, respectively. I, is a p X p
identity matrix, and 1 indicates a vector whose elements are
all one. By concatenating matrices and vectors in Eq. (@), a
homogeneous equation can be obtained:

-1, © L [diag(my) - - diag(m,)] | [VQEC(_]?I )} — 0, (10)
D Yy

where D € RP/XGPH)) s a sparse design matrix and y €
RGPTHXL i an unknown vector. The homogeneous system
always has a trivial solution y = 0. To have a unique (up to scale)
non-trivial solution, the matrix D should have a one dimensional
null space, i.e., when rank of D is (3p+ f — 1), a unique solution
can be obtained via singular value decomposition (SVD). The
minimum condition to have a unique solution up to scale is f > 5
and p > 3, or f =4 and p > 2. Unlike conventional photometric
stereo settings, increasing the number of light directions does not
necessarily make the problem easier in this setting, because it also
increases the unknowns about light intensities.

4.2 Factorization based method

Although the linear joint estimation method is simple to imple-
ment, it has practical limitations in terms of its computational
time and memory requirement when the sparse matrix D is large;
not only constructing D but also computing SVD of D. This
limitation can be relaxed by dividing the observation matrix into
small groups and deriving solutions for each group. However, this
grouping should be performed carefully to avoid the condition
numbers of divided sub-matrices to be high. The condition number
increases when observations within each divided group are similar
to each other, and as a result, the numerical error becomes greater.
To avoid these issues, we develop a factorization based method
described in this section.

Like solution methods of uncalibrated photometric stereo, light
directions and surface normal can be solved directly via matrix
factorization as Eq. (5) and Eq. (6). In our setting, since we know
the light directions L, we can find an appropriate non-singular
matrix H for resolving the biases. Regardless of the effect of light
intensities, direction of SAH should be the same with L. Thus, we
can use this constraint, (SH) x L = 0 where X indicates a cross
product for determining H as

hy "

1 lh'| =0,
=118 hiT

0 —1;,38;
l; 38 0

li,2si

an

where H = [hq|ha|hs], [; . and §; are i-th row of L and S,
respectively. The solution of Eq. (TI) is unique up to scale when
there are more than 4 distinct light directions. Using estimatedAH,
we can compute unbiased albedo-scaled surface normal H-'B .
Interestingly, this factorization based method can naturally bypass
the light intensity estimation; thus, it is suitable for our setting.
Compared to the linear joint estimation method, the computational
cost of the factorization based method is lower, even without
dividing observations M into small groups.

4.3 Alternating minimization method

While the previous two methods are effective in ideal settings,
they are prone to large errors due to un-modelled observations,

such as shadows and pixel saturations. To avoid this problem, we
develop a robust method that is based on alternating minimization
for solving Eq. (7).

Our method computes albedo-scaled surface normal B® and
non-uniform scalings E® in an alternating manner using their
intermediate estimates from the previous iteration. Using E®
from the previous iteration and by fixing it, albedo-scaled surface
normal B(+1) is updated by

2

B(+1) — argminHM - E(’)LBTHF. (12)
B

The above problem is a linear problem with respect to B and can

be solved efficiently. Once matrix B(*+1) is determined, E(t1) is

then updated by solving

2

E(HD) — argminHM _ ELB(’“)THF. (13)

E
Since matrix E is diagonal, each element Ei(hq) is simply
determined by
Ty, (T
gD Zj mi;(1; bj(t )) (14)
L ST )T

The initial scaling matrix E(©) is set to an identity matrix, and the
convergence criteria is defined by the magnitude of variation of
matrix B, i.e., HB(H‘D — B(’)||F < €, where € is set to a small
value (in our implementation, € = 1.0e-8).

If we consider E as weights, this alternating minimization is
similar to iteratively re-weighted least squares (IRLS) [23] except
that weights are defined row-wise (each image has same weight).
We show how the alternating method operates in the following.
Let us consider updating BUt1) with fixing E(), then Eq. (12)
becomes

B+ = arg];ninHM—E(’)LBTH (15)

2
F
2

b

- argminHM _E'LBT — E’LBT|
B F

where EO) = E* + E’, E* is the ground truth (that we do not
know), and E” is the error from ¢-th iteration. It shows that the
smaller the scaling error E” is, the smaller objective cost becomes.
The elements of E() can also be written as

o yma (b O)T

b)) T
> mi b T+ Y m 1T by T

3

16)

- X (b b)) (A] (b + b))

where bUT1) = b* + b, b* is the ground truth, and b” is the
error from t-th iteration. Since the denominator is fixed for all
images, and the left-hand side of the numerator is proportional to
the ground truth scaling E*, the smaller the error b” becomes, the
better scaling elements E becomes. To summarize, if the current
estimate of albedo-scaled surface normal B() is better than the
previous one, E() is better updated. In our experiments, above
improvements are always observed since updated E® becomes
closer to the ground truth than E©. Then, B® and E® are
alternatingly updated. The minimum condition for obtaining a
stable solution is experimentally found to be f > 5 and p > 3.
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4.4 Robust Alternating minimization method

solving Eq. by the linear joint estimation, factorization based,
alternating minimization (AM) can be biased by outliers. One
possible solution to resolve outliers, is to reformulate Eq.
as

{E*,B*} = argmin|M — ELB" ;. (17)
E,B

In order to solve L1-norm minimization in Eq. (I7), we adopt
iteratively re-weighted least squares (IRLS) [23]]. At each iteration,
we multiply a weight value for each pixel. Pixels that are consid-
ered outliers are multiplied by small weights, and pixels consid-
ered inliers are multiplied by high weights. Therefore, Eq. (I2)),
and Eq. are modified as

B+ = argglinHW(’) © (M — E(’)LBT)H; (18)

2

e

E(+) = argmin|[W© © (M - ELB+D '
E

;o (19

where W () is weight matrix and ©® element-wise multiplication.
Weight matrix is defined as

WO = 5 max(|(M - ECDLBED ) 8)71 0)

where ~y, and [ are a scaling factor and a thresholding value,
respectively. Compared to proposed three methods in Sec.
Sec. and Sec. L1-based robust method can take care about
sparse outliers effectively.

5 SIGNAL-TO-QUANTIZATION-NOISE RATIO ANAL-
YSIS

One of the important benefits of our method is its compatibility
to the sensor’s auto-exposure function that makes non-uniform
scaling of observations. With auto-exposure, SQNR of observa-
tions is effectively increased by avoiding over-/under-exposures.
As a result, the surface normal estimates are less suffered from
quantization noise, and thus, a greater accuracy can be obtained.
Based on the previous study of quantization noise [24], SQNR is
written as

_signal  Cp Qu _ Qu
SQNE = noise % R =W @D

where p is the expectation of the signal, @) is the number of
quantization levels, and C' is a scaling factor representing the
amount of exposure. Also, R = Vj; — Vj, where V; and V},
are the minimum and maximum scene irradiance. Thus, R and
(e are both the functions of exposure time. From Eq. I), we can
observe that SQNR without saturation is dependent of the number
of quantization levels @); thus, better exposed signals produce a
higher SQNR.

When the signals are over-exposed, the SQNR expression
becomes more complicated due to saturation, as

onal e
sonp < Sgnal o Cop—a (22)
noise ~ (A=CoVi) |
Q

where A, «, and C,, are saturation threshold, expectation of error
within saturation sub-interval, and scaling factor of the over-
exposure case, respectively. Here, C,V}, is replaced by A due to
the saturation.

Let us assume that not all signals are saturated. Then, the
condition that the well-exposed case has a greater SQNR than the
over-exposed case is following:

CoQu — Qo

Qu Cop —
VeV = B0l ~ 3- Vi +Qa @3)

Above can be simplified by some algebraic operations into:

Qu Qu
(Vh — Vl (COVh — )\) - Qa'

The condition to satisfy Eq. with respect to Q) is

(CoVi =) (Vi =W) (CoVi — )

Q< -

«a W @

where (C,V}, — A) is the maximum error. Mathematically, over-
exposed case can produce higher SQNR than well-exposed case.
However, in general situations, SQNR of well-exposed case is
better than over-exposed case because the number of quantization
levels () is usually larger enough than maximum error (C,V}, —\)
over expectation error «. Therefore, well-exposed signals have
higher SQNR than over- or under-exposure cases in terms of
quantization if the number of quantization levels is sufficient.
Then, our methods are beneficial with auto-exposure to increase
SQNR since it can handle non-uniformity caused by auto-exposure
effectively.

If there are quantization noise in the images, the observation
matrix M becomes

> (24)
)

Q> ;o (29

M=M*+(¢=ELB' +¢, (26)

where M* and ( are the ideal observation and quantization noise,
respectively. Using the noisy input in Eq. 26) , the objective
function in Eq. (7) becomes

{E*,B*} = argmin|[¢|[%, s.t.
B

)

(=M-ELB'. (27
Therefore, in the cases of high SQNR data, we can compute
surface normal and intensities by optimizing Eq. without
biases since ( is close to zero (M ~ M™). However, in low
SQNR inputs, minimizing Eq. can produce biased results
because ( is not small anymore (M # M™). As a result, auto-
exposure can help to estimate surface normal by increasing SQNR
of images, and our method is suitable for dealing with the exposure
variations.

6 LIGHT INTENSITY CALIBRATION ANALYSIS

One may think that light intensity calibration is an easy task, but
it actually requires both careful control over the environment and
explicit knowledge about the reflectance of a calibration target. To
show this, we perform light intensity calibration using a diffuse
sphereﬂ Assuming a Lambertian reflectance model and known
surface normal N, the scaled light matrix S can be estimated
from a set of measurements M as

2

S* = argéninHWQC (M) — WQC(SNT)‘ . (28)

where ) denotes the locations of shadowed entries in the obser-
vation M, and mqe represents an operator that extracts entries

1. Due to the presence of saturations, a chrome sphere with specular
highlights is not a proper calibration object for this task.
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Fig. 2: Light intensity calibration. A diffuse sphere is illuminated under different light directions by moving an identical light source.
The red point indicates the lighting direction, and a blue circle is a circle fitting to the image of a sphere. The numbers under photographs
are the estimated light source intensities, that are relative to that of Direction 1.

that are not shadowed (2°). Since S = EL, with known light
directions L, we can determine the light intensities by

E = S*Lt. (29)

We recorded images of a diffuse sphere by changing the light
directions of an identical light source with retaining its distance to
the target object approximately the same. The camera response
function is linear and uncompressed RAW images are used.
Exposure times are set constant with making sure that there is no
under- or over-exposures. In addition, to neglect the perspective
effect, a camera is placed far enough from the target object so that
we can assume an orthographic projection model. Fig [2] shows
some of the recorded images, and the light intensity matrix E is
obtained by Egs. (Z8) and (29).

As summarized in the numbers in Fig. ] the estimated light
intensities have variations while they are supposed to be uniform
under this setting. The variations may be caused due to that (1)
although the sphere is carefully selected, it still deviates from
the Lambertian assumption, and (2) the assumed surface normal
directions may be different from the truth due to errors of circle
fitting. As such, even with a careful procedure, the light source
intensity calibration is not a straightforward task. And in our
setting, it had a non-negligible spread of estimated intensities
(maximum 0.052 when the intensities are normalized to one,
corresponding to 5% error). Therefore, it is needed to directly
model the variations of light intensities in the photometric stereo
formulation.

7 EXPERIMENTS

We evaluate the proposed methods, linear joint estimation,
factorization based, alternating minimization (AM), and ro-
bust alternating minimization (Robust-AM) methods, using syn-
thetic (Sec. [71)), benchmark (Sec. [7.2), and real-world (Sec. [7:3)
scenes in the setting of non-uniform intensities and exposures.
Although none of the previous techniques are designed for the
non-uniform intensity setting, as previous methods to compare,
we use standard Frobenius-norm minimization [1]], robust L1-
norm minimization used as a baseline method in [25]], and the
state-of-the-art photometric stereo algorithm based on constrained
bivariate regression (CBR) [25]].

71

We first test our methods using synthetic examples that are
textured and rendered with a Lambertian reflectance model with

Synthetic data

shadows. For qualitative and quantitative comparisons, we analyze
the effects of non-uniform light intensities and auto-exposure.
In addition, we demonstrate how well previous and proposed
methods handle non-Lambertian components.

Non-uniform light intensities: We first test the setting of non-
uniform light intensities. The scenes are rendered under 20 varying
light directions with their intensity variance 0.05. The qualitative
visualization of surface normal estimates and error maps are
summarized in Fig. |§| with comparison to other previous methods,
i.e., Frobenius-norm, L1-norm, CBR. Our methods, namely, linear
joint, Factorization, and AM methods correspond to the ones
described in Secs. 4.1} 2] and 3] respectively. Our proposed
methods produce results close to the ground truth compared to
other techniques that do not explicitly consider the non-uniform
light intensities. The quantitative results are reported under each
error map. The superior performance is consistently observed
under varying numbers of images and light intensity variances
as shown in Fig. ]

Auto-exposure case: Auto-exposure allows us to obtain measure-
ments with a higher Signal-to-Quantization-Noise ratio (SQNR).
To assess the benefit of auto-exposure in photometric stereo
and effectiveness of our methods in this setting, we render
two datasets; one with auto-exposure and the other with fixed-
exposure. In the auto-exposure dataset, the sensor irradiances are
stretched to properly include the most of dynamic range before
quantization. For the fixed-exposure dataset, sensor irradiances are
quantized without stretching. From the two types of dataset, we
apply the same set of photometric stereo methods for performance
evaluation. The results are summarized in Table. [l While the
fixed-exposure setting suffers from a low SQNR (which leads to
lower accuracy of surface normal estimates), the auto-exposure
retains a higher SQNR. And with our methods, this setting
is properly handled and accurate surface normal estimates are
obtained.

Non-Lambertian cases: Since our proposed methods, especially,
linear joint estimation and factorization based method are general
solutions for ideal Lambertian objects, it is difficult to deal
with non-Lambertian components. In order to see how well our
four methods cope with non-Lambertian components, we perform
experiments on non-Lambertian examples under non-uniform light
intensities. To render non-Lambertian examples, we adopt Cook-
Torrance model [17]. Similar to Lambertian cases, we produce 20
images which are rendered varying light directions and intensities
as shown Fig. E[ Input images have a lot of non-Lambertian
regions and saturated pixels. Fig. |§] shows qualitative and quan-
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Fig. 3: (Lambertian cases) Photometric stereo experiment under non-uniform light intensities. The scenes are rendered under 20 distinct
light directions with their intensity variance 0.05. Our methods (linear joint, factorization, AM and Robust-AM) effectively handle the
condition of non-uniform light intensities. Error maps are scaled by 4 times. The numbers indicate the mean angular errors in degree.

titative comparisons with other previous methods. Linear joint
and factorization based methods are severely broken down while
previous method cannot deal with non-uniform light intensities.
Compared to other methods, AM and Robust-AM methods ef-
fectively handle non-uniform light intensities and non-Lambertian
components.

7.2 Benchmark data

Shi et al. [26] provide photometric stereo dataset which contains
10 sets of input images, calibrated light directions, intensities
for each image as well as ground truth surface normals. Unlike
dataset in Sec. input images are not synthetic, and also contain
noise and outliers. Dataset covers various types of surface such
as complicated BRDF and spatially-varying materials. Since their
images are captured under varying light intensity condition, it is
appropriate to experiment our proposed methods on their dataset.
Table. 2] shows angular errors of each method for each example.
In the most of examples, AM and robust-AM methods produce
smaller errors than previous methods which do not consider non-
uniform light intensities and sensor exposures. However linear
joint method is vulnerable to outliers and easily broken down.

Interestingly, for complicated cases (POT2, COW, HARVEST),
our methods are not much different from conventional methods
or rather are not good. Surface materials of those examples
are spatially-varying or complicated, thus consideration for non-
Lambertian and outliers is more critical factor than non-uniform
intensities and sensor exposures. Because our methods are so-
lutions to the basic Lambertian model, considering non-uniform
intensity to an example such as the Harvest, which includes a
considerable number of outliers, can have a negative impact on the
results. In most cases, however, handling non-uniform intensities
can be made for non-Lambertian objects with an simple method
such as L1-norm minimization Sec. 4.4}

7.3 Real data

We design three different settings for the real-world experiment;
(A) non-uniform light source intensities across images, (B) record-
ing with auto-exposures under identical light intensities (by mov-
ing the same light source), and (C) use of an uncontrolled mobile
phone camera for imaging where auto-exposure is turned on under
varying light source intensities. For all real-world examples, we
use a shiny sphere to calibrate the light directions. To suppress
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results across these variations.

Sphere Textured Caesar

Fixed Auto Fixed Auto Fixed Auto

SQNR 48.395 126.47 42.992 126.65 41.676 128.7
Frobenius 1.347 24.865 1.9296 24.989 2.6284 24.434
L1 1.5052 24.355 2.135 24.481 2.8427 21.853
CBR [25] 17.292 14.464 19.599 14.752 20.878 21.514
Linear joint 9.2883 0.80469 13.351 0.80413 11.667 2.4814

Factorization 2.699 0.71346 4.3541 0.73457 5.8064 2.36
AM 2.1928 0.15501 3.0471 0.16254 3.4081 0.41689
Robust-AM 2.2852 0.15501 3.1601 0.16254 3.5626 0.41689

TABLE 1: Comparison under auto-exposure (Auto) and fixed-exposure (Fixed) settings. SQNR and the mean angular errors of surface

normal estimates in degree are shown.

other disturbing factors, our experiments are carried out in a dark
room.

Non-uniform light source intensities: To record images under
different light intensities and directions, we use controllable light
sources whose brightnesses can be manually controlled by the
gain of power supply. The camera setting, such as shutter speed
and aperture, are all fixed in this experiment, and a linear sensor
response is used. In this experimental setting, we record 20 images
for each static scene. The results are summarized in Fig. [6] in
which the estimated surface normal and their 3D reconstruction
using [27|] are presented. As shown in the figures, our methods
properly handle the varying light source intensities compared to
Frobenius-norm, L1-norm and CBR methods, with which severe
distortions are observed in their reconstructed surfaces.

Auto-exposure: When auto-exposure is used, the shutter speed
and/or aperture size of a camera is automatically adjusted to record

well-exposed images according to the amount of incoming light.
While it increases SQNR, it results in the non-uniform intensity
setting.

For this experiment, we record 20 images of each static scene
with auto-exposure. Fig[/|shows the comparative result. As shown
in the figure, our methods consistently yield higher quality outputs
than the other methods because our method explicitly accounts for
the non-uniform exposures.

Mobile phone cameras: Our method is suitable for uncontrollable
cameras like many of mobile phone cameras, where we cannot
turn off the auto-exposure setting. With such cameras, recorded
images are in the condition of non-uniform exposures across
images. From recorded images from a mobile phone camera,
we linearize the intensity observations using the method of [28]
as preprocessing. Fig [8] shows the surface normal estimates and
their 3D reconstructions. While the 3D reconstructions of conven-
tional methods are severely deformed, our methods show better
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Fig. 5: (Non-Lambertian cases) Photometric stereo experiment under non-uniform light intensities. The scenes are rendered under 20
distinct light directions with their intensity variance (0.05. Our methods (linear joint, factorization, AM and Robust-AM) effectively
handle the condition of non-uniform light intensities. Error maps are scaled by 4 times. The numbers indicate the mean angular errors

in degree.

reconstructions in general. The linear joint estimation method
suffered from the outliers in this case, but that is not observed
in factorization based and AM methods.

7.4 Difference from spatially-varying light case

Spatially-varying light intensities can be caused by near-light or
non-isotropic light source cases, and there are a few approaches
to dealing with this [29], [30f, [31]. As stated, our setting is
different from the near-light setting, and we primarily consider
the situation where the directional light intensities are different
across images. The setting is not a subset of the spatially-varying
light case, and to verify the difference, we show the results of
applying our method and the NLPS method [29] to both spatially-
varying (near-light) and non-uniform light (our setting) cases. The
results are summarized in Table. 3 This result is rather natural in
that the near-light setting is better handled by NLPS [29]], while
the non-uniform light case (our setting) cannot be dealt well with
the method based on the near-light assumption, because these are
two distinct settings.

8 CONCLUSION

This paper described photometric stereo methods that can handle
the non-uniform light source intensities and exposures across
images. We showed the effect of varying light intensity conditions
in photometric stereo that is relevant in practical settings. We
then developed solution methods that explicitly account for the
non-uniform light intensities and exposures; namely, linear joint
estimation, factorization based, alternating minimization, robust
alternating minimization methods. The linear joint estimation
and factorization based methods are simple and easy to imple-
ment, they occasionally suffer from numerical instability due to
un-modelled observations. The alternating minimization method
showed a greater robustness over these techniques, while retaining
the efficiency in computation. The robust-AM methods effectively
handle sparse outliers which cannot be detected by linear joint
estimation, factorization based, and AM methods. They are all
effective in the non-uniform intensities setting compared to meth-
ods that neglect the effect of the setting. We further illustrate that
our proposed methods can benefit from auto-exposure, with which
measurements with a greater SQNR can be obtained. Our experi-
ments on synthetic and real-world examples show the importance
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] H Frobenius \ L1 \ CBR [lﬁ[] \ Linear joint \ Factorization \ AM \ Robust-AM \
BALL 16.7 19.107 18.618 30.057 4.6221 3.746 2.7766
CAT 17.34 19.427 18.856 18.566 8.9488 8.8481 8.0482
POT1 18.344 19.308 18.968 14.752 9.6366 9.622 9.4654
BEAR 20.863 22.045 23.01 26.026 9.5641 9.2638 8.0717
POT2 21.562 21.481 20.837 38.158 20.169 19.652 19.584
BUDDA 20.946 22.852 21.485 34.408 15.229 15.113 13.378
GOBLET 23.298 23.643 23.299 47.509 23.428 22.563 18.184
READING 24.877 24.434 24.906 55.759 20.207 18.639 14.185
COw 26.976 27.347 25.942 47.61 28.5 28.307 26.896
HARVEST 33.089 33.424 31.831 48.697 45.017 41.224 33.347

TABLE 2: Comparison under auto-exposure (Auto) and fixed-exposure (Fixed) settings. SQNR and the mean angular errors of surface

normal estimates in degree are shown.
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Fig. 6: Result of varying light source intensities case. From left to right, one of input images, results from Frobenius-norm, L1-norm,
CBR , linear joint estimation, factorization, alternating minimization (AM) and Robust-AM methods are shown.

of properly handling varying light intensities and exposures.
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