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Abstract

The growth of computer vision technology can enable the automatic assessment of dairy cow health, for instance,
the detection of lameness. To monitor the health condition of each cow, it is necessary to identify individual cows
automatically. Tags using microchips, which are attached to the cow’s body, have been employed for the automatic
identification of cows. However, tagging requires a substantial amount of effort from dairy farmers as well as induces
stress on the cows because of the body-mounted devices. A method for cow identification based on three-dimensional
video analysis using RGB-D cameras, which capture images with RGB color information as well subject distance from the
camera, is proposed. Cameras are mostly maintenance-free, do not contact the cow’s body, and have high compatibility
with existing vision-based health monitoring systems. Using RGB-D videos of walking cows, a unified approach using
two complementary features for identification, gait (i.e., walking style) and texture (i.e., markings), is developed.
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1. Introduction

Monitoring the health condition of dairy cows is an
essential task in dairy farming. Dairy farmers and veteri-
narians traditionally assess health by manual observation.
However, the condition of every cow is not often observed
every day because this requires significant time and effort.
The resulting lack of daily health management is a major
contributor to economic losses.

Thus far, several automatic (or semi-automatic) sys-
tems that observe health conditions, such as milking robots
that monitor milk quality, support dairy farmers. Com-
puter vision technology, which enables the non-contact
observation of cows, has recently attracted attention for
health monitoring purposes. Using two-dimensional (2D)
cameras that capture RGB color or grayscale intensity im-
ages, several studies have aimed to detect lame cows by
estimating locomotion scores, which are measured using
back shape and gait analysis (Schlageter-Tello et al., 2014;
Song et al., 2008; Poursaberi et al., 2010; Pluk et al., 2012;
Viazzi et al., 2013). Moreover, Tasdemir et al. (2011) pro-
posed a vision-based estimation of body weight and a body
condition score.

Because of the recent popularization of RGB-D cam-
eras, which capture images of RGB color as well as depth
(distance), as shown in Figure 1, three-dimensional (3D)
imaging has the potential to be the next-generation stan-
dard for health monitoring and analysis. Three-dimensional
imaging can overcome the restrictions of sensor position.

(a) RGB image. (b) Depth image.

Figure 1: RGB-D image captured from an RGB-D camera mounted
in a cowhouse. For the depth image, large depth values (i.e., longer
distances from the camera) are shown as brighter pixel values. Miss-
ing depth values (due to a weak laser pulse reflection) are shown
in black. Note that the aspect ratio and field of view of RGB and
depth images are different (i.e., original resolution for RGB image
was 1920× 1080 pixels, while the depth image was 512× 424 pixels);
a pre-calibrated coordinate mapping between the depth and RGB
information from the RGB-D camera can be obtained.

For example, most 2D vision-based lameness detection uti-
lizes side views to extract the back shape while 3D imaging
is freed from this limitation and thus even top views can be
used for back shape analysis such as in Viazzi et al. (2014),
Van Hertem et al. (2014), and Van Hertem et al. (2016).
Kuzuhara et al. (2015) established a relationship between
body condition scores and 3D shapes extracted from 3D
images. In addition, Salau et al. (2015) investigated the
characteristics of noise in 3D measurements with respect
to the amount of reflection on a cow’s coat.

An important requirement for determining trends in

Preprint submitted to Computers and Electronics in Agriculture August 28, 2019



the health condition of every cow in a cowhouse is the au-
tomatic identification of individual cows. Dairy cows are
traditionally identified using earmarks. One of the oldest
electronic cow identification systems attached small trans-
mitters on cows (Bridle, 1976). Recent tags that include
integrated circuit (IC) chips enable individual information
to be observed by a hand-held terminal or by radio fre-
quency identifier (RFID) sensors (Geng et al., 2009). Iden-
tification systems using IC chips and readers are currently
implemented in commercial cowhouses such as in auto-
matic milking robots. However, tag-based identification
often causes dairy farmers a substantial amount of work in
attaching and maintaining the tags for each cow as well as
inducing stress on the cows because of the body-mounted
devices.

The recent growth in RGB-D vision-based cow health
management studies shows that it is valuable to develop
cow identification methods that are suitable for RGB-D
image analysis. When RGB-D imaging is able to realize
vision-based identification, together with health manage-
ment algorithms, dairy cows will no longer need to have
anything attached to their bodies. Thus far, vision-based
non-contact identification using 2D cameras has been stud-
ied. Mimura et al. (2008) proposed an algorithm for cow
identification using RGB color videos of walking cows.
This approach compares videos using the motion correla-
tion of textures. Similarly, identification based on texture
matching has been studied for other animals (Petersen,
1972; Kelly, 2001). However, it is often difficult to apply
these approaches in a practical environment; for example,
the appearances of cows change according to the path they
take on a wide pathway. In addition, it is difficult to uti-
lize texture-based methods in a dark environment or for
breeds with a textureless coat (e.g., Jersey cows).

We therefore propose a new approach that identifies
cows based on RGB-D imaging and unifies two features
acquired from RGB-D images: gait and texture. The
gait- and texture-based features complement each other
in vision-based cow identification tasks, and the proposed
approach automatically unifies the two identification cues.

Matching textures (i.e., markings) on a cow’s coat is
an intuitive approach for identifying cows (especially Hol-
stein cows). Texture matching, which is a key problem
in computer vision, is employed for a broad range of ap-
plications such as object recognition. One of the simplest
texture matching methods is the template matching al-
gorithm (Lewis, 1995) which matches two textures based
on the subtraction of their image regions. To achieve ro-
bustness to changes in illumination and view angle for
the target object, local image features (Tuytelaars and
Mikolajczyk, 2008) have been designed. A typical exam-
ple of these features is the scale-invariant feature trans-
form (SIFT) proposed in Lowe (2004). SIFT is based on
the histograms of local intensity gradients around a point
on an image converted to a scale- and rotation-invariant
form. Local features calculated from multiple points on
an object are occasionally combined to describe a feature

of the object using texton (Leung and Malik, 2001) or
bag-of-features approaches (Sivic and Zisserman, 2003).
One fundamental drawback when matching local features
is mismatching; i.e., if similar features exist at many loca-
tions, the local features may match to the wrong points.
This problem is mitigated in this work by utilizing the 3D
shapes of cows aligned between two RGB-D sequences to
limit the search domain for the matching of local features.

Texture matching is affected by appearance conditions
such as dark environments, textureless cows (e.g., Jersey
cows), and dirt on the cow’s coat. Therefore, we also
propose another identification algorithm that utilizes the
change in body shape while walking (i.e., gait appearance),
which is robust to changes in illumination and texture.
Gait analysis has been actively studied for vision-based hu-
man identification in the biometrics domain (Nixon et al.,
2006). Compared with other human identification cues
(e.g., faces and fingerprints), gait identification can be em-
ployed without the cooperation of the subjects who do not
need to perform actions such as facing a camera or putting
their finger onto a device to be identified. Thanks to its
suitability for use with surveillance cameras, gait iden-
tification systems are occasionally employed in forensics
applications (Bouchrika et al., 2011; Iwama et al., 2013).
Using machine learning and large-scale gait databases that
contain the images of walking people (Sarkar et al., 2005;
Makihara et al., 2012; Iwama et al., 2012), an identifica-
tion accuracy of over 95% can now be achieved for over
4,000 people (El-Alfy et al., 2014). Using the input from
RGB-D cameras, Nakajima et al. (2013) proposed a 3D
gait feature. We firmly believe that gait identification
is a promising approach for the vision-based identifica-
tion of individual cows, who never cooperate by facing
a camera nor putting their noses onto a device. One
known problem with gait identification is the difficulty of
handling appearance changes caused by different walking
paths, although a few studies have tackled this problem
using a large database (e.g., Muramatsu et al. (2015)).
We overcome this problem using a 3D shape alignment
process. This process is also utilized for texture identifi-
cation, which is employed to compensate for appearance
changes in the gait identification.

Contributions. The main contribution of this study is
the development of a cow identification algorithm for prac-
tical environments based on RGB-D video sequences. The
key problems and approaches for realizing practical iden-
tification can be summarized as follows:

• Illumination changes:
the unification of two complementary features (gait
and texture) enable identification under various illu-
minations (i.e., day and night).

• Various walking paths:
the 3D alignment method mitigates the negative ef-
fect of appearance differences due to a variety of
walking paths.
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Figure 2: RGB-D image capture system.
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Figure 3: Sensor setting for the experiment.

• Variety of cows:
gait identification is suitable for cows with texture-
less or dirty coats.

2. Materials and methods

2.1. Ethics in animal care

This study was conducted according to the guidelines
issued by the Animal Care and Use Committee of Rakuno
Gakuen University. The dataset construction and all other
procedures in this study were carried out the without re-
straining the cows. This study does not require approval
from the Animal Care and Use Committee according to the
clause in the guidelines (Article 28) that excludes ecology
monitoring or livestock sciences from requiring approval.

2.2. RGB-D dataset construction

An automatic capture system for images of walking
cows using a Kinect v2 (Microsoft Corporation) RGB-D
camera in a water- and dust-proofed box that acquires
RGB and depth images at 15 frames per second was devel-
oped, as shown in Figure 2. The image capture system de-
tects incoming moving objects using real-time foreground

RGB-D camera

Top view

Figure 4: Variation of walking paths in the experimental environ-
ment.

extraction, which automatically starts the image capture.
The system was installed in an experimental cowhouse in
Rakuno Gakuen University, Japan; the RGB-D dataset
was created from sequences captured 24 hours per day
over a month (from Sep. 28 to Oct. 27, 2015). The cam-
era was attached to a pole at approximately 3.0 m above
the ground so that the sensor captured a diagonal view
of a pathway which cows walked down from the exit of a
milking robot, as illustrated in Figure 3.

The development of an automatic capturing system
that only captures walking cows is an important future
direction. The video analysis of “walking” cows is ben-
eficial to practical cow monitoring systems such as those
designed to assess the back shape of the cow during walk-
ing for lameness detection (e.g. Van Hertem et al. (2014)).

The camera occasionally captured incoming objects other
than cows, as well as cows that did not always walk smoothly
(i.e., cows that occasionally stop). Since gait (and texture)
features were selected in this study for cow identification,
the sequences were manually selected to meet the follow-
ing requirements: 1) a cow is captured, and 2) it walks
smoothly. The resulting dataset consists of 523 RGB-D
image sequences of 16 individual Holstein cows. Note that
all individuals were image captured multiple times. To
evaluate the identification performance of the system, the
individual identification ground truths (i.e., the true iden-
tification labels) were provided by the milking robot for
all sequences in the dataset. Figure 4 shows the trajec-
tories of the center of gravity of cows from a part of our
dataset. The top-view trajectory image (the left image
in Figure 4) indicates that the dataset includes a variety
of walking paths where cows walk mostly straight but di-
rected at several different areas.

2.3. Evaluation methodology

The basic flow of an individual identification algorithm
is as follows. Given a query video sequence (referred to as
a probe sequence in biometric authentication literature),
the identification algorithm searches for candidates of the
same individual from the sequences in a previously created
dataset (referred to as the gallery dataset) using a dissim-
ilarity measure between the probe and gallery sequences.

The identification (i.e., one-to-many matching) accu-
racy of the proposed identification algorithms was eval-
uated in this study (the algorithms are detailed in the
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Figure 5: Example of CMC curves, which are utilized for evaluating
the identification performance.

following sections). The dataset was divided into two cat-
egories: gallery and probe sequences. Sequences captured
in the first week (Sep. 28 to Oct. 7; 176 sequences)
were designated as the gallery dataset, while the remaining
(360) sequences were used as probe sequences. This setting
is a simulation of a practical identification scenario, where
it takes one week to register the cows in the identification
(gallery) dataset.

The identification accuracy was evaluated using cumu-
lative match characteristic (CMC) curves (e.g., Phillips
et al. (2000)). CMC curves, which are widely used for eval-
uating identification performance in biometrics research,
show the probabilities of correct matches in the top k-rank
matches. Figure 5 shows a typical CMC curve. In the fig-
ure, the rank-1 identification accuracy is 75%; i.e., the
gallery sequences that yield the smallest dissimilarity for
each probe sequence were the correct individual matches
with a probability of 75%.

2.4. Overview of identification systems

This paper proposes two vision-based approaches for
cow identification: gait and texture analysis. We use im-
ages from an RGB-D camera, which has recently become
commonly used in dairy research.

Cow identification using the local image features on
the cows’ coats is proposed. However, this approach is un-
suitable for textureless cows, dark environments, or dirty
coats. Thus, a gait feature based on a series of walking cow
body shape images, which is observed from the depth im-
ages, is also proposed. For both features, the appearance
changes owing to the difference in appearance when cows
walk along different paths are problematic. Therefore, pre-
processing to align the 3D shape sequences was employed,
and then gait and texture features were calculated using
the aligned 3D shapes.

2.5. Preprocessing

Given a depth sequence of a walking cow captured by
an RGB-D camera, the proposed system automatically
generates an aligned 3D point cloud (i.e., a set of 3D
points) sequence of the cow.

2.5.1. Extraction of 3D cow models

The proposed system automatically extracts the walk-
ing cow region based on background subtraction. Using
a depth image captured without any cows, the moving
object (referred to as the foreground) is extracted using
a subtraction approach based on Bayes’ theorem. Basi-
cally, background subtraction using RGB images in a real
environment is a challenging task because of changes in
illumination, but by leveraging the depth information, a
more accurate foreground region can be acquired.

A statistical model of the background was generated
from a depth image sequence without any cows. For each
pixel, the following parameters are calculated:

• P (O= 1|X =B): probability that depth values are
observed during the background sequence

• µ: average depth of the pixel within the sequence

• σ2: variance of the depth of the pixel within the
sequence

Here, O ∈ {0, 1} indicates whether the depth pixel is
observed (O = 1) or missing owing to a weak reflection
of the laser pulse (O = 0). Moreover, X ∈ {F,B} de-
scribes whether the observed depth pixel belongs to the
foreground (X=F ) or background (X=B).

When a depth image containing cows is observed, the
posterior probability that each pixel in the depth image
belongs to the foreground is calculated using the prior
background model. According to Bayes’ theorem, pos-
terior probability P (X = F |O = 1, d) for depth value d is
calculated as follows:

P (X=F |O=1, d) =

P (d|X=F )P (O=1|X=F )

P (d|X=B)P (O=1|X=B)+P (d|X=F )P (O=1|X=F )
,

(1)

P (X = F ) = P (X = B) = 0.5, (2)

P (O=1|X=F ) = 0.5, (3)

P (d|X=B) =
1√
2πσ

exp

{
− (d− µ)2

2σ2

}
, (4)

P (d|X=F ) =
1

Nd
, (5)

where Nd denotes the maximum depth value (8,000 mm
in our experiment). Here, priors for the foreground model
were not used because the background statistics were mod-
eled using only background sequences. Since the statistical
parameters µ and σ are fixed for the same camera setting,
this computation is only required once when setting an
RGB-D camera at a certain position. An advantage of this
approach is its simplicity; capturing a sequence without
cows is only required to prepare the foreground extraction
process. If several sequences including foreground objects
were used as training sequences, the foreground can also
be modeled. However, this requires ground-truth labels
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Figure 6: Posterior foreground
probability. High probability
is indicated by brighter values.

Figure 7: Cow silhouette after
thresholding.

Point cloud
(top view)

Extract the largest cluster

Silhouette

Figure 8: The largest 3D point cluster is extracted for isolating mul-
tiple overlapping cows in a silhouette image.

for foreground areas for the training sequences. The label-
ing of the foreground/background for each frame is quite
time-consuming and was thus avoided. The implementa-
tion for the foreground extraction in this study is based
on a previous gait analysis system using an RGB video
sequence that performed well in practice (Makihara et al.
(2016)).

The posterior foreground probability P (X = F |O =
1, d) of each pixel was mapped onto an image (see Figure 6)
and converted into a silhouette of the cow by thresholding
the probability map, as shown in Figure 7. Depth values
were converted to 3D pointclouds by placing a 3D point
for each depth pixel within the silhouette.

When multiple cows are captured simultaneously, their
silhouettes can overlap in a depth frame. Thus, from the
3D pointclouds generated above, the proposed system se-
lects the largest 3D point cluster using Euclidean cluster
extraction (Schnabel et al., 2007; Rusu and Cousins, 2011),
as shown in Figure 8.

2.5.2. 3D alignment of a cow’s shape

The variation of a cow’s walking path is a significant
problem in texture and gait analysis. From a camera which
is set on a fixed position, the appearance of the texture and
body shape changes; accordingly, the dissimilarity com-
puted from the different appearances leads to a large vari-
ation. To eliminate changes in appearance due to cows
walking along various paths, the position and orientation
of point cloud sequences were aligned so that the shape al-
ways appears at the same position in 3D space, as shown
in Figure9. An iterative closest point (ICP) algorithm (Se-

gal et al., 2009), which is a method for aligning a pair of
3D point clouds for rigid objects, was utilized.

The 3D shapes of walking cows are non-rigid, and adapt-
ing the ICP algorithm to this non-rigid case is a practical
challenge. To achieve robust matching, the point-to-plane
distance (Segal et al., 2009) , which is robust for surface
matching including uneven point sampling, was used. The
transformation parallel to the ground plane was also re-
stricted. To address the movement of body parts (e.g.
legs), a random sample consensus (RANSAC) approach
(Fischler and Bolles, 1981) was used to ignore outlier cor-
respondence where the distance is larger than the thresh-
old (0.05 m in our setting).

As shown in Figure 9(a), a point cloud frame was first
aligned with its neighboring frames because ICP algorithms
occasionally fail to align a pair of point clouds with large
distances caused by a large frame gap. Starting from the
base frame, which was selected to be the middle frame of
the walking sequence, the neighboring frames were aligned
so that each point cloud was fitted well to the already-
aligned one.

Pairwise alignment accumulates 3D errors, so a global
alignment process was performed. Each frame in the se-
quence was aligned to the base frame using the ICP algo-
rithm. The coordinate system of the 3D space was then
converted using the following rules: 1) the first axis of the
3D coordinate system corresponds to the major axis of the
cow’s body, and is oriented parallel to the ground plane,
which can be calculated from the position and orientation
of the RGB-D camera. 2) The second axis is perpendicu-
lar to the ground plane. 3) The third axis is perpendicular
to the other axes. An aligned sequence of point clouds is
shown in Figure 9(b), while Figure 10 shows the RANSAC
outliers (shown in red) for the final global alignment, and
a comparison of combined point clouds before and after
the alignment process.

2.6. Gait identification

Video-based identification processes are generally per-
formed by comparing features extracted from video se-
quences. We thus follow the basic pipeline and describe the
algorithms for calculating features as well as define the dis-
similarity between two sequences. This section describes
a cow identification algorithm using a pair of gait features
extracted from the aligned 3D pointclouds of gallery and
probe sequences. Our gait feature is based on an averaged
gait silhouette (Liu and Sarkar, 2004; Han and Bhanu,
2006), which is simple yet known to be an effective feature
for the identification of people.

2.6.1. Feature calculation: Averaged silhouette

The gait feature was computed by averaging aligned
silhouettes over one walking period, as illustrated in Fig-
ure 12. In the original averaged silhouette method and its
extensions (Liu and Sarkar, 2004; Han and Bhanu, 2006),
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… ………
… … … …(1) Pairwise alignment

(2) Global alignment

(a) Alignment processes for the 3D points. Neighboring frames are first aligned with each other, and then every frame is
aligned to the base frame (the middle frame of the sequence).

…… ……
Time Base frame

Y X
Z

(b) Aligned pointclouds. One axis of the 3D space corresponds to the major axis of the cow’s body, and another axis is set
perpendicular to the ground plane.

Figure 9: 3D shape alignment.

(a) Pointclouds before and after alignment (b) Outliers (shown in red)

Figure 10: 3D alignment result. (a): Point cloud of each frame
combined using different colors. (b): Outliers of the ICP algorithm
based on RANSAC-based outlier rejection of a frame.

Figure 11: An example of leg occlusion which is not easily identified
using side views typically used for gait recognition for humans.

gait features are computed from a 2D silhouette image se-
quence. Our 3D alignment technique is expected to adapt
to the large appearance differences of the sequences.

First, silhouette images observed from the same po-
sition relative to the cow’s body are virtually generated.
Experimentally, the virtual viewpoint is set diagonally up-
ward 50 degrees from the side of the body, which is the
approximate average viewpoint of the sensor setting rel-
ative to the walking cows. The location of the virtual
camera was intended to avoid large missing areas by self-
occlusions. For example, legs are sometimes missing due

to occlusions as shown in Figure 11, and identification us-
ing side views, which is usually used for gait recognition
for humans, is not practical. Note that physically captur-
ing side-view sequences in cowhouses is often impractical
because the cows usually try to contact the devices and
diagonal- or top-views are practical camera settings.

To extract a walking period, the prior knowledge that
walking behavior is a periodic motion was utilized. The
number of frames belonging to a walking period Ngait was
calculated by autocorrelation of the silhouette sequence as
follows:

Ngait = argmax
N

C(N), (6)

where C(N) is the autocorrelation function when the se-
quence shifts N frames.

C(N) = ∑
x,y

∑T (N)
n=0 g(x, y, n)g(x, y, n+N)√∑

x,y

∑T (N)
n=0 g(x, y, n)2

√∑
x,y

∑T (N)
n=0 g(x, y, n+N)2

,

(7)

T (N) = Ntotal −N − 1, (8)

where g(x, y, n) describes the silhouette value {0, 1} at
pixel (x, y) in the n-th frame and Ntotal is the total number
of frames in the sequence.

Image sequences can include multiple walking periods.
A gait feature of the i-th walking period Ei(x, y) is calcu-
lated by averaging the silhouette over one period as follows:

Ei(x, y) =
1

Ngait

∣∣∣∣∣∣
(i+1)Ngait−1∑

n=iNgait

g(x, y, n)

∣∣∣∣∣∣ . (9)
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Figure 12: Gait feature generation.
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Figure 13: Aligned local matching of SIFT features.

Note that the size of gait features was not normal-
ized when the process was included in the generation of
gait energy images (GEI), a widely-used gait feature (Han
and Bhanu, 2006). The feature used in this work is simi-
lar to the original “averaged silhouette” gait feature (Liu
and Sarkar, 2004), which does not include the size normal-
ization. Normalization was not employed because metric
(scale) information was acquired through depth sensing.
One important role of the normalization of GEI is to align
the silhouette sequences with the unknown scale factor in
RGB videos. Because the scale information is known, the
difference in body sizes was represented in our feature.

2.6.2. Dissimilarity definition: Euclidean distance

The dissimilarity between gait features calculated from
two sequences is based on the Euclidean distance. Letting
the features computed from two sequences be EAi(i =
1, 2, ...) and EBj (j = 1, 2, ...), the dissimilarity between
the two sequences Dgait is defined as the median of the
most similar sequence for each walking period.

Dgait = Mediani

[
min
j
‖EAi − EBj‖2

]
, (10)

where ‖ · ‖2 denotes the L2 norm.

2.7. Texture identification
Texture is an intuitive feature that farmers use to iden-

tify the individuals of some cow breeds (e.g., Holstein).

Several studies have proposed texture-based cow identi-
fication, as described in Section 1; however, these meth-
ods are difficult to adapt to environments in which view-
points or walking paths can change. Local image features
are occasionally employed for identifying objects. Recent
studies report that invariant features based on gradient
histograms, such as the SIFT feature (Lowe, 2004), per-
form robustly against viewpoint, illumination, and shape
changes of objects in images. Following this recent trend,
as well as for overcoming the disadvantages of local fea-
tures, an identification approach based on the local match-
ing of SIFT features, where the search domain for the fea-
ture matching is limited by the aligned 3D point clouds,
is proposed.

The implementation of SIFT feature extraction and
dissimilarity calculation use one image per sequence (e.g.,
the middle frame); however, the algorithm can be extended
to employ the whole sequence.

2.7.1. Feature calculation: SIFT features

SIFT is a widely used local feature that is invariant
to changes in rotation, scale, and illumination. Although
the combination of scale and rotation invariance does not
exactly represent affine or perspective transformation in
principle, the original SIFT paper (Lowe, 2004) estimated
the image correspondence under affine and perspective
transforms and performed well if the view difference is

7



not significant, i.e. if the view difference is sufficiently
small, the transformation in local areas can be simulated
by the combination of rotation and scale change. This is
one reason why SIFT features are often utilized for esti-
mating image correspondences under practical situations
(e.g., stereo matching involving viewpoint change).

SIFT features are calculated from gradient histograms
around keypoints, which are distinguishable image points
extracted near corners or edges. The algorithm automat-
ically extracts SIFT features on RGB images and picks
up the features only within the cow’s silhouette, which is
computed by the process described in Section 2.5.1.

2.7.2. Dissimilarity definition: Aligned local matching

SIFT features, which are represented by 128-dimensional
feature vectors, are basically matched using the Euclidean
distance between the feature vectors. However, just search-
ing for similar keypoints between a pair of images without
any restriction causes a large number of mismatches. The
aligned 3D point clouds were utilized to limit the search
domain and overcome this problem.

Figure 13 illustrates the matching process which searches
for keypoint q ∈ SB in Sequence B corresponding to key-
point p ∈ SA in Sequence A, where SA and SB denote
sets of keypoints in the sequences. For each keypoint in
Sequence A, the corresponding points on depth image pD
and 3D point cloud p3D in the same frame of the sequence
were calculated based on the calibration of the RGB-D
camera. Candidate point p′3D in Sequence B was then de-
termined to be the nearest point in 3D space. Using the
camera calibration, p′ was calculated on the RGB image
in Sequence B.

The corresponding point q in Sequence B is defined as
the keypoint that is the most similar to p within a certain
window size centered on p′ using the Euclidean distance
between SIFT feature vectors as follows:

q = argmin
x∈Wp′

(‖v(p)− v(x)‖2), (11)

where x ∈ Wp′ denotes all SIFT keypoints in a window
centered on p′, which are candidates for a corresponding
point. Moreover, v(·) denotes a feature vector correspond-
ing to a keypoint.

The dissimilarity Dtex between two sequences is de-
fined as the average dissimilarity among all pairs of corre-
sponding points. In addition, Dtex was set to infinity when
the variance of the image intensity over a cow region σ is
smaller than the threshold θ, because texture-based iden-
tification is likely to fail when texture variation is small
(e.g., at night or on textureless cows). Hence, Dtex is de-
fined as:

Dtex =

{ ∑
p∈SA

‖v(p)−v(q)‖2
|SA| (σ ≥ θ)

∞ (σi < θ)
(12)

where |SA| denotes the number of keypoints in Sequence
A.
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Figure 14: Image variance σ for textured and textureless individuals.

Here, the threshold θ was determined from training se-
quences so that the images of textured cows (individuals
clearly including both white and black surfaces) captured
in the daytime were judged as textured sequences, and tex-
tureless individuals were judged as textureless sequences
even in the daytime. Figure 14 shows the relationship be-
tween the variance σ and time of day; θ = 3000 was used
in grayscale images whose intensity ranges from 0 to 255.

2.8. Score-level fusion of two identification cues

Gait identification and texture identification comple-
ment each other in cow identification scenarios in chang-
ing environments; hence, it is desirable to automatically
combine these approaches. The fusion of multiple (e.g.,
gait and face) cues has been studied for human identifi-
cation tasks. Leveraging a machine learning approach on
a large dataset constructed under various environments,
score-level (Ross et al., 2006) and feature-level (Ross and
Govindarajan, 2005) fusion have been shown to signifi-
cantly improve identification accuracy.

A simple score-level fusion that linearly combines the
gait- and texture-based dissimilarities was implemented.
Meanwhile, employing texture-based dissimilarity under
textureless scenes (computed based on the intensity vari-
ance σ above) was avoided. Thus, the combined dissimi-
larity is calculated as:

D =

{
αD̄tex + (1− α)D̄gait (σi ≥ θ)
D̄gait (σ < θ)

(13)

where D̄tex and D̄gait denote the normalized dissimilari-
ties, which were calculated as dissimilarities divided by the
average of each dissimilarity distribution over the dataset.
Note that α is a factor for the linear combination, and
α = 0.8 was used empirically, heavily weighting the tex-
ture cue in the textured environment.

3. Results

3.1. CMC curves of both identification algorithms

Figure 15 shows CMC curves for the two identifica-
tion cues as well as their fusion. RGB information a with
low signal-to-noise (S/N) ratio in a dark environment (e.g.,
night), as well as the lack of texture on a cow’s coat caused

8



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

etar noitacifitnedI

Rank

Fusion
Rank1 id: 84.2%

Gait
Rank1 id: 75.6%

Texture
Rank1 id: 45.0%

(a) Results for all probe sequences.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Id
en

tif
ic

at
io

n 
ra

te

Rank

Fusion
Rank1 id: 90.1%

Gait
Rank1 id: 72.9%

Texture
Rank1 id: 81.8%

(b) Results for probe sequences captured in
scenes with textures (σ ≥ θ).
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(c) Result for probe sequences captured in
textureless scenes (σ < θ).

Figure 15: CMC curves of cow identification. The fusion of two identification cues achieves high identification accuracies in every environment.
In textureless scenes (night or textureless cows), texture identification gives nearly chance-level results (a rank-1 identification rate of 7.8 %).
Note that the dissimilarity of the fusion method is equal to the dissimilarity of gait features in (c); thus, the two CMC curves overlap.

(a) Gallery gait feature. (b) Probe gait feature.

(c) Difference of gait features shown in red.

Figure 16: Comparison of the gait features of the same individuals
where the correct match was not obtained in the first rank.

by dirt or the breed (e.g., those with uniformly colored
coats), were a source of difficulty for texture identifica-
tion. As expected, texture identification yielded a high
rank-1 identification accuracy (90.1%) in scenes with tex-
tures (see Figure 15(b)), while it gives almost chance-level
results in textureless scenes such as night scenes or those
of cows with textureless coats. In contrast, gait identifica-
tion using 3D analysis is not affected by scene brightness or
the availability of textures because the depth image sens-
ing using laser pulses is less affected by a dark environ-
ment. Our hybrid approach (called “Fusion” in Figure 15)
achieves the best rank-1 identification accuracy for every
environment.

4. Discussion

4.1. Accuracy of gait identification

The gait-based cow identification algorithm achieved
a 75.6% identification accuracy, whereas human identifi-
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Figure 17: Gait identification result when simply removing head
part.

cation accuracy using a similar feature (Han and Bhanu,
2006) was 94.2% on a dataset consisting of over 4,000 per-
sons (Iwama et al., 2012; El-Alfy et al., 2014). Here, we in-
vestigate why the accuracy of cow identification was lower
than that of human identification.

Figure 16 shows the gait features of the same individ-
uals for which the gait identification failed to find a cor-
rect match in rank 1. The difference of the two features
(shown red in Figure 16(c)) shows that a large error ap-
pears around the head. One reason for the error could
be that cows occasionally move their heads while walking,
and this behavior is independent of the periodic motion of
walking. This is an animal-specific problem that has been
generally ignored in human identification tasks.

Part-based gait identification. One approach for overcom-
ing the head-sway problem is to ignore the head part dur-
ing gait identification. Part-based approaches (Felzen-
szwalb et al., 2010), which utilize features on specific parts
on the body, are employed for pedestrian detection in en-
vironments in which occlusions occur. To investigate the
applicability of this strategy to cow identification, a simple
parts-based gait recognition approach ignoring the head
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part was implemented. As shown in Figure 17, the head
part of cows was removed by cropping a certain amount
from the side gait feature. The left graph in Figure 17
illustrates the change of rank-1 and rank-5 identification
rates when cropping gait features as a function of the crop
area (see the right in the figure). The rank-1 identifica-
tion rate has been only slightly increased (from 75.6 % to
77.2 %) when cropping almost all parts of the head (i.e.,
approximately 20 % crop). This indicates that multiple
factors affect performance degradation and this needs to
be resolved in future work. For further investigation using
large-scale datasets, optimization of distances using met-
ric learning (e.g. Makihara et al. (2017)) may be a good
direction.

Multi-modal gait identification. While we used two modal-
ities, gait and texture, for the individual identification
task, employing additional modalities is another strategy
for improving the matching accuracy. In this work, unlike
usual approaches for creating a widely used gait feature
(GEI) (Han and Bhanu, 2006), the size of gait features
was not normalized. This is because the scale informa-
tion was acquired through depth sensing and we wanted
to include the difference in body size in our feature. Our
approach can be categorized as a simple version of feature-
level fusion of two modalities: body size and gait. Since
the size and gait information are encoded into the same
gait feature, it is difficult to estimate the contribution of
each modality to the identification accuracy. However, we
believe the impact of size information is limited compared
to the gait feature. According to a human gait analysis
study by Uddin et al. (2017), rank-1 identification rate
using a person’s height was only 0.8 %, while the accu-
racy using the gait feature (GEI) was 89.7 %. For fur-
ther development, the presence of metric information can
provide interesting applications for gait analysis. For in-
stance, metric information such as the length of the legs
are promising features in addition to gait.

Size of the dataset. Our experiment employed a dataset
consisting of 523 sequences of 16 individual cows. In con-
trast, several studies utilizing 3D videos have been larger
in scale (e.g., Van Hertem et al. (2014) employed a dataset
consisting of 511 individual cows). Our experimental re-
sults demonstrate that our algorithms are useful for rela-
tively small cowhouses with tens of individual cows. How-
ever, we plan to collect a dataset including a larger num-
ber of individuals and sequences with multiple cowhouses
in addition to long-term observation. A large-scale dataset
that includes hundreds or thousands of individuals is useful
for more reliable evaluation as well as for machine learning
algorithms such as silhouette-based gait recognition lever-
aging deep learning (Takemura et al., 2018).

4.2. Toward fully automatic systems

In this study, we manually selected RGB-D sequences
that captured walking cows for input into the proposed

system. Manual selection is a major challenge that needs
to be eliminated in order to achieve a fully automatic sys-
tem that operates in practical environments. We plan to
implement an automatic detector for walking cows using
object detection (e.g., Okuma et al. (2004)) and tracking
(e.g., Wu et al. (2013)) techniques.

5. Conclusion

This paper described two complementary features, gait
and texture, from RGB-D images for cow identification,
and an identification method using a fusion of the two
identification cues. Leveraging the alignment algorithms
of cow shape 3D point clouds that are automatically ex-
tracted by a background subtraction of depth images, the
gait feature is calculated by averaging the aligned silhou-
ette sequence of a walking cow. The texture dissimilarity
between two sequences is calculated as the average dis-
similarity of the SIFT features, where the search domain
is limited using the 3D alignment information. We imple-
mented a score-level fusion approach to selectively combine
the dissimilarities of texture and gait features.

In an experiment using sequences captured in a cow-
house over a month, the accuracy (the rank-1 identifica-
tion rate) of our unified approach was 84.2 %. This is
superior to the individual accuracies of gait identification
and texture identification. A future research direction is
the development of a fully automated system for detecting
walking cows.

Together with cow health monitoring systems using
RGB-D cameras (Viazzi et al., 2014; Kuzuhara et al., 2015;
Van Hertem et al., 2016), we are confident that RGB-D
video-based identification approaches will become a key
technology in next-generation dairy farming.
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