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Abstract

Realtime novel view synthesis, which generates a novel view of a real object or scene
in realtime, enjoys a wide range of applications including augmented reality, telepres-
ence, and immersive telecommunication. Image-based rendering (IBR) with rough ge-
ometry can be done using only an off-the-shelf camera and thus can be used by many
users. However, IBR from images in the wild (e.g., lighting condition changes or the
scene contains objects with specular surfaces) has been a tough problem due to color dis-
continuity; IBR with rough geometry picks up appropriate images for a given viewpoint,
but the image used for a rendering unit (a face or pixel) switches when the viewpoint
moves, which may cause noticeable changes in color. We use the eigen-texture tech-
nique, which represents images for a certain face using a point in the eigenspace. We
propose to regress a new point in this space, which moves smoothly, given a viewpoint
so that we can generate an image whose color smoothly changes according to the point.
Our regressor is based on a neural network with a single hidden layer and hyperbolic
tangent nonlinearity. We demonstrate the advantages of our IBR approach using our own
datasets as well as publicly available datasets for comparison.

1 Introduction
Realtime novel view synthesis (NVS) is a technique to generate a view of a certain real object
or scene from an arbitrary viewpoint. It has a wide variety of applications [2, 24], such as
augmented reality (AR), telepresence, and immersive telecommunication.

Image-based rendering (IBR) is an interesting approach for NVS with a photorealistic
rendering quality. IBR basically represents an object (or a scene) with light paths that hit the
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Figure 1: Example visual artifacts. Novel views are rendered from slightly different view-
points. Significant color change in the middle novel view results in flickering in video.

object and then come into the camera without relying on the 3D geometry. View morphing
[23, 27] is an early technique that mixes light paths captured in two different images to
smoothly interpolate the viewpoint in-between them. Plenoptic functions [17] as well as
light fields [16] and lumigraphs [10] model light rays at a certain 3D position and direction,
which are extended to unburden the capturing process [4, 6]. For satisfactory rendering
quality, these techniques require a vast amount of images, sometimes along with accurate
3D positions of the cameras. Other interesting approaches have been proposed so far in this
field, e.g., deep neural network-based NVS [9] and one for special scenes [14].

The view-dependent texture mapping (VDTM) technique by Debevec et al. [7, 8] is a
promising approach that synthesizes photorealistic views from a feasible number of images,
which can be viewed as a hybrid of model-based and image-based rendering. It uses rough
geometry (a 3D mesh in most cases) as a proxy of the object’s real shape and picks the
appropriate color from the input images for the face of the mesh or a pixel in the resulting
view. Due to the geometry, interpolation works well between different images. Varieties of
VDTM’s extensions have been proposed [5, 15, 18, 20, 22, 28].

A notable problem of VDTM is visual artifacts (i.e., flickering) when the color of the
same point is picked up from different images due to a moving viewpoint, as shown in Figure
1. This is because VDTM tries to find the image captured from the direction closest to the
viewpoint. With automatic exposure or for objects with specular reflection, this problem
causes severe degradation of the visual quality.

Some efforts have been made toward alleviating the problem of flickering. Original
VDTM [8] mixes colors from not only one but several images captured from closest to view
directions. This works well if the geometry is accurate and the lighting condition is sta-
tionary during image capturing. However, designing mixture weights that always gives a
zero weight for an image just before it switches to another is tough due to discontinuity in
the image selection. Buehler et al.’s technique [4] is an attempt in this direction, design-
ing sophisticated image blending weights. Others [12, 15] rely on the expensive graphcut
algorithm [3] and Poisson blending [21], which are not suitable for realtime rendering.

This paper proposes a novel technique for realtime NVS that offers smooth color changes
even with input images in the wild (i.e., uncontrolled and with specular reflection). Our idea
is to use eigen-texture [19]. Eigen-texture is a low-dimensional representation of a set of
small images. An image in the set is a point in the eigenspace, and we can interpolate in-
between these images by just finding an appropriate point in the eigenspace. Using this
representation, we can interpolate an image between different images without designing a
weight function as in [4, 8] or expensive computation in the rendering process.

With this approach we replace image mixing with finding an appropriate point in the
eigenspace. According to the IBR techniques [10, 16], a light ray at a certain 3D position is
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Figure 2: Overview of our system.

a function of its direction. Therefore, we synthesize the image for a certain face in the mesh
by regressing a point in the eigenspace based on the direction to the camera. We use a neural
network with a single hidden layer for this regression problem.

The main contribution of this paper is summarized as follows:

• We propose realtime NVS using eigen-texture [19] in order to avoid sudden changes
in color. To synthesize an image from a novel viewpoint, we regress a point in the
eigenspace. To the best of our knowledge, this is the first attempt to use eigen-texture
for a freely moving viewpoint.

• For regression of a point in the eigenspace, we employ a neural network with a single
hidden layer. This shallow network architecture works well for our regression prob-
lem. Thanks to the simplicity, it can be easily implemented in GPUs.

• We visually demonstrate the visual quality of our realtime NVS using eigen-texture
over several datasets. To highlight the advantage, we compare it with some variants of
VDTM techniques.

2 Overview
Figure 2 shows an overview of our NVS technique, consisting of the online and offline
stages. In the offline stage, we estimate the intrinsic and extrinsic camera parameters as well
as reconstruct a rough 3D geometry of a real object (it can be a scene, but we use an “object”
for notation simplicity). We can manually build such a 3D geometry represented by a 3D
mesh, or 3D reconstruction techniques work as well, such as the combination of VisualSFM
[26] and CMPMVS [11]. Let S = {In|n = 1, . . . ,N}, {(Kn,Rn, tn)|n = 1, . . . ,N}, and M be
the set of input images, the camera parameters, and the 3D geometry, respectively, where
Kn ∈ R3×3, Rn ∈ R3×3, and tn ∈ R3 are intrinsic camera parameters, rotation matrix, and
translation vector. Through the standard rendering pipeline, we generate depth map Dn of
M for camera Cn that captured In using the camera parameters. Each face f in M is then
projected to Dn. From images that passed visibility test for f (i.e., whether f is visible in
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Figure 3: Some examples of image patches for certain faces. Image patch zn is placed at the
upper left triangle of the n-th block in the raster scan order. Black segments indicate that the
face is not visible in In. The left image shows that the line patterns are not perfectly aligned
and are blurry in some images. Right image shows that the color of the same face differs.

each of images or not), a set of image patches Z f = {z f n} that correspond to f are extracted
as shown in Figure 3. We find eigen-texture y f n of z f n in Z f . The regressor for face f is also
trained that maps a representation c of the viewpoint position to the eigen-texture y.

In the online stage, for given extrinsic camera parameter R and t with intrinsic camera
parameter K of the viewpoint, the eigen-texture y f for face f is regressed, and we reconstruct
the corresponding image patch. The image patch is applied to f as texture to synthesize the
novel view. The online process can be fully implemented on current GPUs.

3 Image Patch Extraction
Given 3D geometry M and camera parameters, we extract a set of image patches for each
face in M from the images in S. Some faces are not visible in an image due to, e.g., occlusion.
We do visibility test, which is the same as [18], to get a set of images in which f is visible.

For visibility test, the standard rendering pipeline firstly generates the depth map Dn of
M using Rn, tn, and Kn. We deem face f is visible in In when all three vertices of f are
visible. Let v f i ∈ R3 denote the 3D position of vertex i ∈ {0,1,2} of face f . We transform
v f i to camera Cn’s coordinate system by

vn
f i = Rnv f i + tn. (1)

We then project vn
f i onto Dn using Kn to identify the corresponding depth value dn

f i. When
this vertex is visible (i.e., not occluded) in In, the depth value dn

f i is sufficiently close to the
third component of vn

f i. Therefore, we judge that f is visible in In if |(0 0 1)vn
f i−dn

f i|< θvis
is satisfied for all i. Threshold θvis is empirically determined based on the scale of M.

For face f , we extract the corresponding image patch z f n from each image In in which f
is visible to form set Z f . In this work, we store the image patches as right isosceles triangle
whose shorter edges are L pixels as in Figure 3. To extract the image patch, for each pixel
in this triangle, we map it to the corresponding point on face f and then project the point to
In using the camera parameters. Let α1 and α2 be barycentric coordinates of pixel k in the
image patch, where pixel k’s position p′k ∈ R2 is given using vectors u′1 and u′2 representing
the two same-length edges of the image patch z f n by

p′k = α1u′1 +α2u′2 (α1 +α2 ≤ 1). (2)
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The corresponding point pk on f is given by pk = α1u1 +α2u2, where u1 and u2 are the
corresponding edges of f . Point pk is then projected to image In using camera Cn’s param-
eters as in Equation 1. We use bilinear interpolation to get the pixel colors of non-integer
positions.

4 Eigen-texture
The eigen-texture method [19] is a technique to embed image patches into a low-dimensional
space, which is identified by eigen-decomposition. Let z̃n be a vectorization of image patch
zn and z̄ be the average over Z (we omit subscript f for notation simplicity). All image
patches are centerized by z̃n− z̄ and then are concatenated into matrix Z̃, where each column
is z̃n− z̄. We can factorize Z̃Z̃> with eigen-decomposition:

Z̃Z̃>e j = λ je j, (3)

where e j and λ j are the j-th eigenvector and eigenvalue, respectively. The low-dimensional
eigenspace is spanned by top J eigenvectors.

An arbitrary image patch z can be embedded into this eigenspace by

y = E>(z− z̄), (4)

where E is a matrix whose columns are a set of largest eigenvectors. We can also reconstruct
image patch z from y with

z = Ey+ z̄. (5)

5 Eigen-Texture Regression
Equation (5) implies that we can synthesize an image patch from an arbitrary point in the
eigenspace. We assume that the light sources in the scene are fixed during image capturing.
Under this assumption, the image patch is a function of the viewpoint position relative to the
corresponding face. This means that we can synthesize an appropriate image patch for any
viewpoint if we can regress a point in the eigenspace for that viewpoint. We do this with a
shallow neural network-based regressor that maps a certain representation of the viewpoint
to a point in the eigenspace.

As the viewpoint representation, we use the position of the viewpoint in a coordinate
system defined on each face. Using u1 and u2 that represent two edges of face f , we can
compute a normal vector a0 ∈ R3 of f by

a0 =
u1×u2

‖u1‖ ‖u2‖
, (6)

where the operator “×” is the cross product. We define f ’s coordinate system by taking
a0, a1 = u1/‖u1‖, and a2 = a0× n1 as the axes as well as o = ∑i vi/3 as the origin. In this
coordinate system, we can represent the viewpoint position c ∈ R3 by

c = A>(−R>t−o), (7)

where A = (a0 a1 a2), R and t are the rotation matrix and translation vector of the viewpoint.
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The architecture of our neural network-based regressor is a single hidden-layer network
with the hyperbolic tangent nonlinearity given by

ỹ(c) =W2 tanh(W1c+b1)+b2, (8)

where W1 is in RU×3, W2 in RJ×U , and U the number of the hidden units. The loss

`({yn},{cn}) = ∑
n
‖yn− ỹ(cn)‖2 (9)

for each face is separately minimized during the training, where cn is the camera Cn’s position
relative to f given by Equation (7) and yn is the point to which image patch zn is embedded.
The regressor is trained with the gradient descent algorithm. We employ weight decay for
regularization. We normalized cn so that each of its elements has unit variance.

6 Online Stage
The online stage renders the object given a viewpoint (i.e., rotation matrix R and translation
vector t, as well as intrinsic camera parameter K) in realtime. For face f , we compute the
relative viewpoint position c with Equation (7). Then the point y in the low-dimensional
space is regressed via Equation (8). To obtain y, we do the inverse of the normalization
applied to yn f . We synthesize image patch z corresponding to y with Equation (5). Finally
image patch z is applied to face f as a texture. Thanks to the light-weight architecture of our
regressor, the online stage can be implemented in a GPU to achieve realtime rendering.

7 Datasets and Implementation Details
We tested our realtime NVS using two datasets from [12] (i.e., triangle pyramid and pen-
guin datasets). From the images in these datasets, we estimated the camera parameters and
reconstructed 3D meshes using VisualSFM [26] and CMPMVS [11]. The numbers of faces
in these meshes were reduced to 10K (triangle pyramid) and 5K (penguin) using quadratic
edge collapse decimation. We also used a publicly available Buddha dataset in [1, 25]. We
reduced the number of faces from over 2M to 5K for reducing the time for regressor training.
Refer to the supplementary material for more details on these datasets.

Figure 4 shows histograms of the contribution ratios for J = 1, 5, and 10. For J = 1, the
contribution ratio has a long-tail distribution. The distribution gradually gets concentrated
as J increases. This demonstrates that J = 10 covers most variations in image patches. To
secure the visual quality, we used J = 10 in the following section; however, smaller J might
be sufficient. The number U of our regressor’s hidden units is 10. The weight of weight
decay was set to 0.1. We employed an variant of the gradient descent algorithm, Adam [13],
but gradients were computed for all image patches at once (i.e., the batch size equals to the
number of visible image patches) since the number of image patches is not very large. The
network parameters were updated for 30,000 times (i.e., the number of epochs is 30,000).
Some faces do not have enough image patches and thus J = 10 eigenvectors could not be
obtained. We instead filled the rest of the entries of E with zeros.

As a baseline, we employed simple VDTM, which picks up one most suitable image for
each pixel in the novel view and copies the corresponding color. This technique basically
gives a novel view with spatial and temporal color discontinuities. Our second baseline is
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Figure 4: Histograms of contribution ratios for penguin (top), triangle pyramid (middle),
and Buddha (bottom) datasets for J = 1 (left), 5 (middle), and 10 (right). When J = 1 the
contribution ratios are widely distributed. As J increases, the distribution gets more compact.

VDTM with texture blending. This is the most similar to the original VDTM technique [8].
We find three most suitable images from images and use their mixture for the pixel. The
mixture weight is based on the cosine similarity s between the vectors (i) from the corre-
sponding point in the mesh to camera Cn, and (ii) from the same point to the viewpoint. As
the third baseline, we add temporal blending to the second baseline (VDTM with temporal
blending). Let gt be a certain pixel value in the current novel view before temporal blending
and g′t−1 the corresponding pixel value in previous one after temporal blending, where the
corresponding pixel is found based on the depth map. We compute the current novel view’s
pixel value g′t by mixing them by i.e., g′t = (gt +g′t−1)/2.

8 Visual Results and Comparisons

Figures 5, 6, and 7 show an example novel view synthesized from moving viewpoints (best
viewed in supplementary video). In these figures, we also show novel views synthesized
with mean image patches {z̄ f } f (mean views) and the difference between our technique’s
novel views and the mean views (difference views).

The triangle pyramid dataset has specular reflection on the silver box on the wall. In the
baselines, the color on that surface changed when the image switched. This may give us
non-realistic perception. Our technique again gradually changes the color. In the difference
view, we can see that the surfaces of the triangle pyramid change a lot. This is because the
object has a weak specular reflection component, which is not reproduced in the mean view.
This component also causes significant color changes in the baselines, while ours handled it.

The penguin dataset has fine texture of the stuffed penguin’s fluffy surface. This texture
is preserved in our technique, even though it comes from low-dimensional space (compare
it with the mean view). Simple VDTM has clear edges in the penguin’s back due to image
switching. Such discontinuity is not visible in VDTM with texture blending and temporal
blending since texture and temporal blending works well. However, this is still noticeable in
video (refer to our supplementary video). We can also observe that the anisotropic reflection
on the fluffy surface, which gradually changes the color, is preserved, while it is lost in the
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Figure 5: Novel views from the triangle pyramid dataset. From top-left to bottom-right: Our
eigen-texture-based technique, and its mean and difference views, simple VDTM, VDTM
with texture blending, and VDTM with temporal blending.

Figure 6: Novel views from the penguin dataset. From left to right: Our eigen-texture-based
technique, and its mean and difference views, simple VDTM, VDTM with texture blending,
and VDTM with temporal blending.

Figure 7: Novel views from the Buddha dataset.

baselines.
The Buddha dataset is easy because it has more images and there only is diffuse reflec-

tion. Yet VDTM and ours offers clear difference. We guess the light source moved with the
camera while capturing because the luminance around the upper arm and the body changes
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Figure 8: Evolutions of ỹ when viewpoint moves (top) and image patches (bottom).

Figure 9: Image patches when viewpoint moves and the differences from the previous one.
From top-left to bottom-right: ours, simple VDTM, VDTM with texture blending, and
VDTM with temporal blending. We enhanced the contrast for visibility.

as the camera moves around. As in the difference view in Figure 7, ours reproduced this
change. This is because the light source moved along with the camera, which is a special
case that our technique works with moving light sources. In contrast, the VDTM-based
techniques make temporally discontinuous changes.

Figure 8 shows the evolution of each component of regressed point ỹ. This figure in-
dicates that the most variations in this face (one in the penguin dataset) is described by the
first eigenvector (the cyan line), which is major according to Figure 4. Since the curves are
smooth, resulting image patches also smoothly change. Figure 9 shows the reconstructed
image patches and their difference from the previous image patch around the 110-th time
unit in Figure 8. Ours constantly and gradually changes the color, while the VDTM-based
techniques give noticeable spikes.
Performance. The online stage ran at 60 fps (capped by the display’s refresh rate), 56 fps,
and 21 fps for the Buddha, penguin, and triangle pyramid datasets on average using CUDA
implementation on a NVIDIA Titan X Pascal GPU (12 GB VRAM, 3584 cores).
Limitations. Triangular shapes are noticeable in our novel views as eigen-textures/regressors
could not give image patches sufficiently close to input images. One of the reasons is that
the number of image patches is too small due to occlusion to cover all variations. This is an
inherent problem of NVS or IBR, and only the solution may be to add more images. Another
possible reason is independent training of regressors. Our regressor training is independent
for each face, and any smoothness terms for adjacent faces are not used at all. We can handle
this problem by incorporating smoothness terms in the loss function; however, training will
be much more expensive. Another remedy can be to adjust colors in the online stage. We
can employ Poisson blending [21] to alleviate such artifacts at the cost of the frame rate.

Extrapolation is another weak point of our technique, which is shared by most IBR tech-
niques. In our case, the regressor’s output is usually unstable when the viewpoint is far from
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any cameras. A countermeasure is to train the regressor to give zero (and thus gives the mean
image patch) when it is far from cameras. Resulting novel views are not faithful to the real
object, but the visual quality will be better.

9 Conclusion
This paper proposed eigen-texture-based NVS. Being different from the original eigen-
texture method [19], ours can interpolate image patches for arbitrary viewpoint using neural
network-based regressors. Our experimental results demonstrated that it could reproduce
specular reflection on metallic surfaces and anisotropic reflection on fluffy surfaces, as well
as view-dependent lighting. Temporal smoothness of resulting novel views is the most im-
portant aspect of our technique, which basically is infeasible for VDTM in an uncontrolled
image capturing process or with anisotropic reflection surfaces. Our future work includes
employing smoothness terms among adjacent faces in the loss function or Poisson blending
in the online stage. Since our technique represents all image patches for a face by a fixed-
size set of eigenvectors, we can increase the number of input images without any cost in the
online stage. We will test this aspect as well.
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