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Abstract. We propose a method for estimating radiometric response
functions from observation of image noise variance, not profile of its
distribution. The relationship between radiance intensity and noise vari-
ance is affine, but due to the non-linearity of response functions, this
affinity is not maintained in the observation domain. We use the non-
affinity relationship between the observed intensity and noise variance to
estimate radiometric response functions. In addition, we theoretically de-
rive how the response function alters the intensity-variance relationship.
Since our method uses noise variance as input, it is fundamentally robust
against noise. Unlike prior approaches, our method does not require im-
ages taken with different and known exposures. Real-world experiments
demonstrate the effectiveness of our method.

1 Introduction

Many computer vision algorithms rely on the assumption that image intensity is
linearly related to scene radiance recorded at the camera sensor. However, this
assumption does not hold with most cameras; the linearity is not maintained in
the actual observation due to non-linear camera response functions. Linearization
of observed image intensity is important for many vision algorithms to work,
therefore the estimation of the response functions is needed.

Scene radiance intensity (input) I and observed image intensity (output) O
are related by the response function f as O = f(I). Assuming it is continuous
and monotonic, the response function can be inverted to obtain the inverse
response function g (= f−1), and measured image intensities can be linearized
using I = g(O). Since only observed output intensities O are usually available,
most estimation methods attempt to estimate the inverse response functions.

1.1 Prior work

Radiometric calibration methods assume known characteristics of radiance at
a camera to estimate unknown response functions. One class of these methods
uses information about the ratio of input radiance intensities. The Macbeth
color checker is used for estimating the response functions by several research
groups such as [1]. Nayar and Mitsunaga [2] use an optical filter with spatially
? Nara Institute of Science and Technology; part of this work was done during visiting

Microsoft Research Asia.
?? Institute of Industrial Science, University of Tokyo



2

varying transmittance; the variation corresponds to the ratio. Instead of using
such special equipment, some methods use a set of input images taken with
different exposures from a fixed viewpoint so that the ratio becomes available.
These methods are divided into parametric and non-parametric approaches.

In the parametric framework, Mann and Picard [3] propose a method that
assumes the response functions can be approximated by gamma correction func-
tions. Mitsunaga and Nayar use a polynomial function for the representation [4].
Grossberg and Nayar apply principal component analysis (PCA) to a database of
real-world response functions (DoRF) and show that the space of response func-
tions can be represented by a small number of basis functions [5]. Mann [6] uses
the comparametric equation that defines the relationship between two images
taken with different exposure times.

Debevec and Malik estimate response functions with a non-parametric repre-
sentation using a smoothness constraint [7]. Tsin et al . estimate non-parametric
forms of response functions using the statistical analysis [8]. Pal et al . propose
to use a Bayesian network consisting of probabilistic imaging models and prior
models of response functions [9]. While non-parametric approaches have greater
descriptive power, the large number of unknown variables often lead to compu-
tationally expensive or unstable algorithms.

A few authors have proposed more general estimation methods that allow
camera motion or scene motion between input images. Grossberg and Nayar [10]
estimate the function from images with scene motion using brightness histograms,
which avoid difficult pixelwise image registration. Kim and Pollefeys [11] propose
a method that allows free camera motion by finding the correspondence among
images. These methods can handle more general cases, but still require images
taken with multiple exposures.

Another class of the estimation methods is based on the physics of the imag-
ing process. Lin et al . estimate the function from the color blending around
edges in a single image [12]. For grayscale images, a 1D analogue of the 3D color
method is presented in [13]. Wilburn et al . propose to use the temporal blend-
ing of irradiance [14]. Matsushita and Lin propose an estimation method from
profiles of image noise distributions [15]; their method relies on the assumption
that profiles of noise distributions are symmetric. More recently, Takamatsu et
al . [16] propose to use a probabilistic intensity similarity measure [17] for the
estimation. Unlike these approaches, our method only uses noise variance, which
is considered a lower level of information.

1.2 Proposed method

In this paper, we propose a method for estimating camera response functions
from observation of image noise variance. Figure 1 illustrates the overview of
the proposed method. As shown in the figure, noise variance in the input do-
main has an affine relationship with input intensity. This relationship, however,
is not maintained in the output domain due to the non-linearity of camera re-
sponse functions. By estimating a function that projects the non-affine intensity-
variance relationship to an affine one, our method derives the response functions.
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Fig. 1. The noise variance in the input domain has an affine relationship with input
intensity level. Due to the non-linearity of the response function, the affine relationship
is lost in the output domain. The proposed method estimates the response functions
by recovering the affinity of the measured noise variances.
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Fig. 2. The relationship between response function and noise variances in input and
output domains. The magnitude of output noise variance (height of the filled region)
varies with the slope of the response function with a fixed input noise variance.

Figure 2 depicts the relationship between the response function and noise vari-
ances in input and output domains. The ratio of the input/output noise variance
is closely related to the slope of the response function.

Unlike Matsushita and Lin’s work [15], our method does not rely on profiles
of noise distributions which are more difficult to obtain in practice. The proposed
method has the following two advantages over their method. First, it uses the
more reasonable assumption; the affinity of intensity-variance relationship in the
input domain. We derive this relationship from the nature of photon (electron)
noise [18, 19]. Second, the proposed method uses only noise variances rather than
noise profiles, therefore it only requires less amount of information about noise.
Practically, it makes the procedure of noise measurement easier.

This paper has two major contributions. It first theoretically derives how the
radiometric response function alters the intensity-variance relationship, and vice
versa. While it has been pointed out that these two quantities are related [8, 20],
the exact alternation has not been explicitly described. Second, it introduces
a method that has a wide range of applicability even with noisy observations.
While many existing algorithms break down when the noise level is high, we
show that the proposed method is not sensitive to the noise level because it uses
the noise as information.

2 Noise Variance and Response Functions

This section provides a theoretical relationship between the response function
and noise variances in the input and output domains. We show that the levels
of noise variance in the input and output domains are related by the square of
the first derivative of the camera response function. This result is later used to
develop the estimation algorithm in Section 3.
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2.1 Derivation of the relationship between noise variance and
response functions

We treat the relationship between input or output intensity and noise variance
as the function similar to Liu et al . [20]. The noise variance function σ2

O(Õ) in
the output domain, where the noise-free output intensity is Õ, can be described
as

σ2
O(Õ) =

∫
(O − µO)2p(O|Õ)dO =

∫
(f(I)− µO)2p(I|Ĩ)dI.

The conditional density function (cdf) p(O|Õ) represents the noise distribution
in the output domain, i.e., the probability that the output intensity becomes O
when the noise-free intensity is Õ. Likewise, the cdf p(I|Ĩ) represents the noise
distribution in the input domain when the noise-free input intensity is Ĩ. The
function f is the response function, and Õ and Ĩ are related by f as Õ = f(Ĩ).
µO(= µO(Õ)) is the expectation of the output intensity with the cdf p(O|Õ).

Using the Taylor series of f(I) around Ĩ and assuming that the second- and
higher-degree terms of the series are negligible (discussed in Section 2.3), we
obtain

σ2
O(Õ) ' f ′2(Ĩ)σ2

I (Ĩ), (1)

where σ2
I (Ĩ) is the function of noise variance in the input domain when the noise-

free input intensity is Ĩ. This equation shows the relationship between the noise
variance and the response functions. This relationship has been pointed out in [8,
20], however, the correctness of the equation was not thoroughly discussed.

To simplify the notation in derivation of Eq. (1), we define:

µI = µI(Ĩ) =
∫
Ip(I|Ĩ)dI, Id = µI − Ĩ ,

Mn = Mn(Ĩ) =
∫

(I − µI)np(I|Ĩ)dI (n ≥ 0). (2)

µI is the expectation, or mean, of input intensity I with the cdf p(I|Ĩ). Id denotes
the difference between the expectation µI and the noise-free intensity Ĩ. Mn is
the n-th moment about the mean. Note that we do not put any assumptions
about the profile and model of the noise distributions.

The expectation of the output intensity µO where the noise-free output in-
tensity is Õ can be written as

µO = µO(Õ) =
∫
f(I)p(I|Ĩ)dI = Õ +

∞∑
j=1

Nj
f (j)(Ĩ)
j!

, (3)

where Nj is the j-th moment about Ĩ defined as follows.

Nj =
∫

(I − Ĩ)jp(I|Ĩ)dI =
∫

((I − µI) + Id)jp(I|Ĩ)dI =
j∑

k=0

(
j

k

)
Ij−k
d Mk. (4)

Note that the response function f is represented using its Taylor series.
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From the definition, the noise variance function σ2
O(Õ) where the noise-free

output intensity is Õ can be derived as

σ2
O(Õ) =

∞∑
j=1

(
f (j)(Ĩ)
j!

)2

Lj,j + 2
∞∑

j=1

∞∑
k>j

f (j)(Ĩ)
j!

f (k)(Ĩ)
k!

Lj,k, (5)

where Lj,k is defined as

Lj,k =
∫

((I − µI)j −Nj)((I − µI)k −Nk)p(I|Ĩ)dI = Nj+k −NjNk. (6)

As can be seen in the above equation, Lj,k is commutative (Lj,k = Lk,j).
A detailed calculation gives us L1,1 = M2 = σ2

I (Ĩ), L1,2 = 2Idσ2
I (Ĩ) +M3, · · · .

Substituting these terms into Eq. (5), we obtain:

σ2
O(Õ) = f ′2(Ĩ)L1,1 + f ′(Ĩ)f ′′(Ĩ)L1,2 + · · ·

= f ′2(Ĩ)σ2
I (Ĩ) + f ′(Ĩ)f ′′(Ĩ)(2Idσ2

I (Ĩ) +M3) + · · · . (7)

Eq. (7) is the exact form of the relationship between the response function and
noise variances in the input and output domains. By discarding the second- and
higher-degree terms of Eq. (7), Eq. (1) is obtained. We discuss the validity of
this approximation in Section 2.3.

2.2 Noise variance function
Eq. (1) shows the relationship between the response function and noise variance
functions in the input and output domains. The input to our method is the
measured noise variance in the output domain. This section models the noise
variance function σ2

I (Ĩ) in the input domain so that the estimation algorithm
for the inverse response function g can be developed.

Input intensity I with camera noise can be written as

I = aP +NDC +NS +NR, (8)

where a is a factor of photon-to-electron conversion efficiency with amplification,
and P is the number of photons. NDC , NS , and NR indicate dark current noise,
shot noise, and readout noise, respectively [21]3. The noise-free input intensity Ĩ
equals to aP .

Now we consider the noise variance function in the input domain. We assume
the different noise sources are independent. From Eq. (8), the noise variance
function in the input domain, σ2

I (Ĩ), can be written as

σ2
I (Ĩ) = Ĩσ2

S + σ2
DC + σ2

R, (9)

where σ2
∗ denotes the variances of the different noise sources [8]. Eq. (9) can be

written in a simplified form as

σ2
I (Ĩ) = AĨ +B, (10)

where A = σ2
S and B = σ2

DC + σ2
R. This equation clearly shows the affine

relationship between the noise-free input intensity Ĩ and the noise variance σ2
I (Ĩ).

3 The effect of the fixed-pattern noise is included in the term P .
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2.3 Validity of the approximation

It is important to consider the validity of the approximation in Eq. (7). In
this section, we show it in the following steps. First, we show that Li,j becomes
exponentially smaller as i+j increases. Second, the second largest term in Eq. (7),
L1,2, is small enough to be negligible compared with L1,1 through a detailed
calculation. Hereafter, we normalize the input and output intensity ranges from 0
to 1.

Relationship between Li,j and i+ j By assuming independence of different noise
sources, the second- and higher-order moments can be computed by summing
up the moments of noises from different sources. Three types of noise sources
must be considered: dark current noise, shot noise, and readout noise [21]. We
do not consider low-light conditions [22], so the effect of the dark current noise
becomes small.

The probability density of the readout noise can be considered to have a
normal distribution with a mean value equal to the noise-free input intensity Ĩ.
The moment can be written as

NRi
=
{

0 (i is odd)∏i/2
j=1(2j − 1)σ2

R (i is even).
(11)

In Eq. (11), (2j−1) σ2
R � 1, so the i-th moment of the readout noise NRi

about
the noise-free input intensity becomes exponentially smaller as i increases.

Shot noise is modeled as Poisson distribution [21]. From the theory of gen-
eralized Poisson distribution [23], the moment MSi

about the mean of the dis-
tribution is defined as

MSi ' ai−2
(
σ2

SĨ
+O(σ4

SĨ
)
)

(i ≥ 2), (12)

since the minimum unit of the distribution equals to a (See Eq. (8)). σ2
SĨ

is the
variance of shot noise where the noise-free input intensity is Ĩ. By substituting
this into Eq. (4) yields

NSi
' Ii

d +
i∑

j=2

(
i

j

)
Ii−j
d aj−2σ2

SĨ
. (13)

Even in the worst case where
(

i
j

)
is overestimated as 2i, NSi

becomes exponen-
tially smaller, since Eq. (13) is rewritten as

NSi
≤ Ii

d +
i∑

j=2

(2Id)i−j(2a)j−2(2σSĨ
)2, (14)

and we know that 2Id � 1, 2a� 1, and (2σSĨ
)2 � 1. This equation shows that

NSi
exponentially decreases as i increases.
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The term Li,j is defined as Li,j = Ni+j −NiNj in Eq. (6). Because the i-th
moment of image noise Ni can be computed as the sum of the readout and shot
noise as Ni = NRi + NSi , it also becomes exponentially smaller as i increases.
From these results, we see that the term Li,j becomes exponentially smaller as
i+ j increases.

Ratio of L1,1 to L1,2 Now we show that L1,2 is small enough to be negligible
compared with L1,1. A detailed calculation gives us L1,2 = 2IdM2 + M3. The
third moment of shot noise MS3 can be computed from Eq. (12). Also, the third
moment of readout noise can be obtained using Eq. (4) as

MR3 = NR3 − 3IdNR2 − I3
d = −3Idσ2

R − I3
d . (15)

From these results, the following equation is obtained:

L1,2 = 2IdM2 − 3Idσ2
R − I3

d + aσ2
SĨ
. (16)

Since M2 ' σ2
R + σ2

SĨ
, a � Id, if M2 6� I2

d , the order of L1,2 is roughly the
same as the order of IdM2. Since Id is the difference between the noise-free
input intensity and the mean which can be naturally considered very small, it is
implausible to have cases where M2 � I2

d .
From these results, the order of L1,2 is roughly equivalent to the order of

IdL1,1, and Id is small because it is computed in the normalized input domain,
e.g., in the order of 10−2 (' 1/28) in 8-bit image case. Therefore, L1,2 is about
10−2 times smaller than L1,1.

To summarize, L1,2 is sufficiently small compared with L1,1, and Li,j de-
creases exponentially as i + j increases. Also, because response functions are
smooth, f ′(Ĩ) 6� f ′′(Ĩ). Therefore, Eq. (7) can be well approximated by Eq. (1).

3 Estimation Algorithm

This section designs an evaluation function for estimating inverse response func-
tions g, using the result of the previous section.

3.1 Evaluation function
From Eqs. (1) and (10), the noise variance σ2

O(Õ) of the output intensity O is

σ2
O(Õ) ' f ′2(Ĩ)σ2

I (Ĩ) + σ2
Q = f ′2(Ĩ)(AĨ +B) + σ2

Q. (17)

σ2
Q is the variance of the quantization noise, which affects after applying the re-

sponse function. Using the inverse response function g, Eq. (17) can be rewritten
as

σ2
O(Õ) =

1
g′(Õ)2

(Ag(Õ) +B) + σ2
Q. (18)

The variance of the quantization noise σ2
Q becomes σ2

Q = l2/12, where l is the
quantization interval. Since its distribution is uniform, the following equation
holds:

σ2
Q =

∫ l
2

− l
2

x2p(x)dx =
1
l

∫ l
2

− l
2

x2dx =
l2

12
. (19)
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In the following, we use σ2
Om

(Õ) to represent the measured noise variance to
discriminate from the analytic form of the noise variance σ2

O(Õ). Using Eq. (18)
and the measured noise variances σ2

Om
(Õ), our method estimates the inverse

response function g that minimizes the following evaluation function:

E1(g;σ2
Om

(Õ)) = min
A,B

∑
Õ

(
σ2

O(Õ)− σ2
Om

(Õ)
)2
. (20)

Eq. (20) involves the estimation of A and B, which can be simply solved by
linear least square fitting, given g.

To make the algorithm robust against the measuring errors, namely the er-
roneous component in the measured noise, we use weighting factors. Eq. (20) is
changed to

E2(g;σ2
Om

(Õ)) = min
A,B

1∑
w(Õ)

∑
Õ

w(Õ)
(
σ2

O(Õ)− σ2
Om

(Õ)
)2
, (21)

where the weight function w(Õ) controls the reliability on the measured noise
variance σ2

Om
(Õ) at the intensity level Õ. We use a Cauchy distribution (Lorentzian

function) for computing the weight function w(Õ):

w(Õ) =
1

e2 + ρ
, (22)

where e is defined as e = σ2
O(Õ) − σ2

Om
(Õ). A damping factor ρ controls the

relationship between the difference e and weight w(Õ). As ρ becomes smaller,
the weight w(Õ) decreases more rapidly as the difference e increases.

We also add a smoothness constraint to the evaluation function, and the
evaluation function becomes

E3(g;σ2
Om

(Õ)) =
1∑

Õ σ
2
Om

(Õ)
E2 + λs

1
nÕ

∑
Õ

g′′(Õ)2, (23)

where nÕ is the number of possible noise-free output intensity levels, e.g., 256 in
8-bit case. λs is a regularization factor that controls the effect of the smoothness
constraint. 1/

∑
Õ σ

2
Om

(Õ) is a normalization factor that makes E2 independent
of the degree of noise level.

Our method estimates the inverse response function ĝ by minimizing Eq. (23)
given the measured noise variance σ2

Om
(Õ):

ĝ = argmin
g

E3

(
g;σ2

Om
(Õ)
)
. (24)

3.2 Representation of inverse response functions

To reduce the computational cost, we represent the inverse response functions
using a parametric model proposed by Grossberg and Nayar [5]. In their method,
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principal component analysis (PCA) is performed on the database of real-world
response functions (DoRF) to obtain a small number of eigenvectors that can
represent the space of the response functions. As done by Lin et al . [12, 13],
we compute the principal components of the inverse response functions using
the DoRF. Using the principal components, we represent the inverse response
function g as g = g0+Hc, where g0 is the mean vector of all the inverse response
functions, H is a matrix in which a column vector represents an eigenvector, and
c is a vector of PCA coefficients. Following Lin et al . [12, 13], we use the first
five eigenvectors. Using this representation, the number of unknown variables is
significantly decreased, e.g., from 256 to 5 in the case of 8-bit images.

3.3 Implementation

In our implementation, we set the damping factor ρ to the variance of the dif-
ference e in Eq. (22). The regularization factor λs is set to 5 × 10−7 from our
empirical observation. Minimization is performed in an alternating manner. We
perform the following steps until convergence:

1. minimize the evaluation function in Eq. (23) with fixing the weight func-
tion w(Õ)

2. recompute the values of the weight function w(Õ) using the current estima-
tion result

We use the Nelder-Mead Simplex method [24] as the minimization algorithm
implemented in Matlab as a function fminsearch. The values of the weight
function w(Õ) are set to one for every Õ at the beginning. During the exper-
iments, we used five initial guesses for the inverse response function g as the
input to the algorithm. The converged result that minimizes the energy score is
finally taken as the global solution.

4 Experiments

We used two different setups to evaluate the performance of the proposed al-
gorithm; one is with multiple images taken by a fixed video camera, the other
is using a single image. The two setups differ in the means for collecting noise
variance information.

4.1 Multiple-images case

In this experiment, the measurements of noise variances are obtained by cap-
turing multiple shots of a static scene from a fixed viewpoint with fixed camera
parameters. From multiple images, a histogram of output intensities is created
for each pixel. From the histogram, the noise-free output intensity Õ is deter-
mined by taking the mode of the distribution, assuming that the noise-free in-
tensity should correspond to the most frequently observed signal. The pixelwise
histograms are then merged together to form the histogram h(O, Õ) for each
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Fig. 3. Results of our estimation method. Top row: comparison of inverse response
functions. Bottom row: measured noise variance and fitting result.

(a) (b) (c)

Fig. 4. Recorded scenes corresponding to
the results in Figure 3 (a-c).

Table 1. Mean RMSE and disparity of
the estimated inverse response functions in
terms of normalized input. Three different
scenes were used for each camera.

Camera Mean RMSE Disparity

A. DCR-TRV9E 0.026 0.053

B. DCR-TRV900 0.024 0.040

C. DSR-PD190P 0.033 0.055

output intensity level Õ. Finally, the noise distribution p(O|Õ) is computed by
normalizing the histogram h(O, Õ) as

p(O|Õ) =
h(O, Õ)∑
O h(O, Õ)

. (25)

Results We used three different video cameras for this experiment: Sony DCR-
TRV9E (Camera A), Sony DCR-TRV900 NTSC (Camera B), and Sony DSR-
PD190P (Camera C). To obtain the ground truth of Camera C, we used Mitsunaga
and Nayar’s method [4], and the Macbeth color checker-based method [1], and
combined these results by taking the mean. For Camera A and B, we used only
the Macbeth color checker-based method [1] to obtain the ground truth because
the exposure setting was not available in these cameras. The results obtained by
the proposed method are compared with the ground truth curves.

Figure 3 shows the results of our algorithm. The top row shows the plot of
the estimated inverse response functions with the corresponding ground truth
curves. The bottom row shows the estimated and measured distributions of
noise variances; the horizontal axis is the normalized output, and the vertical
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Fig. 5. Comparison between our method and Matsushita and Lin’s method [15]. Our
method uses noise variance, but not profiles of noise distributions. Our method works
well even when the sampling number is relatively small.

axis corresponds to the noise variance. Figure 4 shows the scenes used to obtain
these results.

Figure 3 (a) shows an estimation result using the blue channel of Camera A.
The maximum difference is 0.052 and the RMSE is 0.025 in terms of normalized
input. As shown in the bottom of (a), the noise variances in lower output levels
contain severe measured errors. Our algorithm is robust against such errors be-
cause of the use of adaptive weighting factors. Figure 3 (b) shows the result of
Camera B (green channel). The maximum difference is 0.037 and the RMSE is
0.022. Figure 3 (c) shows the estimation result of Camera C (red channel). The
input frames are obtained by setting the camera gain to 12 db which causes high
noise level. The maximum difference is 0.037 and the RMSE is 0.024.

Table 1 summarizes all the experimental results. For each camera, three dif-
ferent scenes are used. The algorithm is applied to RGB-channels independently,
therefore 9 datasets for each camera are used. Disparity represents the mean
of maximum differences in normalized input. From these results, the proposed
method performs well even though the algorithm only uses the noise variance as
input.

4.2 Comparison with another noise-based estimation method

Figure 5 shows the comparison between our method and Matsushita and Lin’s
method [15]. Unlike other estimation methods, these two methods take noise as
input. We use Camera B for the comparison.

As shown in the result, the estimation results are equivalent when the number
of images is relatively large. However, Matsushita and Lin’s method breaks down
when the number of samples becomes small, and our method shows significant
superiority. In statistics, it is known that variance of measured from samples’
variance is inversely proportional to the number of the samples. Therefore, the
measured variance becomes more stable than the profile of noise distribution
does, as the number of samples increases. In addition, Matsushita and Lin’s
symmetry criterion naturally requires large number of samples to make the noise
profiles smooth, while it does not hold in the lower number of samples in Figure 5.
These are why our method works well when the number of samples is relatively
small.
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4.3 Single-image case

We describe a single-image case where only one shot of the scene is available. In
this setup, the distribution of noise variances are collected from uniformly colored
image regions. However, the measured noise distribution is often insufficient to
determine the inverse response functions because the limited measurements do
not span the entire range of output levels. To better constrain the problem, we
use a prior model p(g) of the inverse response functions obtained from the DoRF
as done in [12] and [15].

Using the prior model p(g), the MAP (maximum a posteriori) estimation is
performed by maximizing the cdf p(g|σ2

Om
(Õ)) which represents the probability

of the inverse response function being g when the measured noise variances are
σ2

Om
(Õ) as

ĝ = argmax
g

p(g|σ2
Om

(Õ)) = argmax
g

(
log p(σ2

Om
(Õ)|g) + log p(g)

)
. (26)

The likelihood p(σ2
Om

(Õ)|g) is defined as

p(σ2
Om

(Õ)|g) =
1
Z

exp
(
−λpE3(g;σ2

Om
(Õ))

)
, (27)

where Z is the normalization factor, and λp is a regularization coefficient that
determines the weight on the evaluation function E3. We empirically set λp to
2× 104 in the experiments. The prior model p(g) is formed using a multivariate
Gaussian mixture model as

p(g) =
K∑

i=1

αiN (g;µi,Σi), (28)

where N represents a normal distribution with mean µ and covariance matrix Σ,
and αi is a weight factor. The prior model is obtained using the PCA coefficients
of the inverse response functions in the DoRF by applying the cross-entropy
method [25]. The number of normal distributionsK is set to 5 in our experiments.

Results We used a Canon EOS-20D camera for the experiment. To obtain the
ground truth, we used Mitsunaga and Nayar’s method [4] using images taken
with different exposures. Since our focus is on estimating the inverse response
functions from the measured noise variances, we photographed a scene composed
of relatively flat and uniformly colored surfaces, so that the noise variances can
be easily obtained. The left image in Figure 6 shows one of two scenes used for
the experiment. We photographed them five times each at six different camera
gains (ISO 100 ∼ 3200). We manually selected 21 homogeneous image regions
to obtain the noise variances as input. In total, we ran our estimation algorithm
60 times (= 2 scenes× 5 shots× 6 ISO levels) for each RGB color channel.

Figure 6 summarizes the results of estimation at different ISO levels. The
noise level increases with the ISO gain level, as shown by the cropped images
on the top. The results indicate that the estimation is unaffected by the greater
noise level. The mean RMSE is almost constant across the different ISO levels,
which verifies that our method is not sensitive to the noise level.
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Fig. 6. Relationship between the noise level and mean RMSE of the estimates. Left
image shows one of the photographed scenes. Top row shows magnification of a part of
the image at different ISO levels. Bottom row shows the mean RMSE of RGB channels
at each ISO gain level, and demonstrates that our estimation method is independent
of noise levels.

5 Conclusions

In this paper, we have proposed the method for estimating a radiometric response
function using noise variance, not noise distribution, as input. The relationship
between the radiometric response function and noise variances in input and out-
put domains is explicitly derived, and this result is used to develop the estimation
algorithm. The experiments are performed for two different scenarios; one is with
multiple shots of the same scene, and the other is only from a single image. These
experiments quantitatively demonstrate the effectiveness of the proposed algo-
rithm, especially its robustness against noise. With our method, either special
equipment or images taken with multiple exposures are not necessary.

Limitations It is better for our method that the measured noise variances cover
a wide range of intensity levels. Wider coverage provides more information to
the algorithm, so the problem becomes more constrained. This becomes an is-
sue, particularly in the single-image case. In the single-image case, we used a
simple method to collect the noise variances, but more sophisticated methods
such like [20] can be used to obtain more accurate measurements that could
potentially cover a wider range of intensity levels.
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