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Abstract
We propose a method for estimating camera response

functions using a probabilistic intensity similarity measure.
The similarity measure represents the likelihood of two in-
tensity observations corresponding to the same scene radi-
ance in the presence of noise. We show that the response
function and the intensity similarity measure are strongly
related. Our method requires several input images of a
static scene taken from the same viewing position with fixed
camera parameters. Noise causes pixel values at the same
pixel coordinate to vary in these images, even though they
measure the same scene radiance. We use these fluctua-
tions to estimate the response function by maximizing the
intensity similarity function for all pixels. Unlike prior
noise-based estimation methods, our method requires only
a small number of images, so it works with digital cam-
eras as well as video cameras. Moreover, our method does
not rely on any special image processing or statistical prior
models. Real-world experiments using different cameras
demonstrate the effectiveness of the technique.

1. Introduction
Many computer vision algorithms rely on the assump-

tion that image intensity is linearly related to scene radiance
recorded at the camera sensor. However, this assumption
does not hold with most cameras; the linearity is not main-
tained in the observation domain due to non-linear camera
response functions. Linearization of measured image inten-
sity is important for many vision algorithms to work. To
linearize measured image intensities, we must estimate the
camera response function.

Camera response functions describe the relationship be-
tween the measured image intensity O and irradiance at a

camera I as O = f(I). Assuming they are continuous
and monotonic, response functions can be inverted to ob-
tain the inverse response function g (= f−1). Measured
image intensities can be linearized using I = g(O). Usu-
ally only observed intensities O are available, so most es-
timation methods attempt to estimate the inverse response
function g.

Our method uses a small number of images of a static
scene captured from the same viewpoint with fixed camera
parameters. Due to noise, these images exhibit slight differ-
ences in intensity. Our method uses these intensity fluctu-
ations to estimate camera response functions. More specif-
ically, we use the probabilistic intensity similarity [13],
which represents the likelihood that two intensity observa-
tions originated from the same scene radiance. The simi-
larity varies with the underlying noise distributions and the
shape of the response functions. Our method uses this re-
lationship between the intensity similarity and the response
function to estimate response functions. As illustrated in
Figure 1, our method uses a physics-based noise model [6]
to define a model-based intensity similarity. Taking a few
images captured from the same viewpoint with fixed cam-
era parameters, our method estimates the response function
by maximizing the similarity among the input images. The
method outputs the estimate of the response function as well
as the data-specific intensity similarity measure. The con-
tributions of this paper are as follows:

• We show a theoretical relationship between intensity
similarity and response functions.

• We develop a practical noise-based method that only
requires a minimum of two images. We also extend
the method to handle a single-image case.
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Figure 1. Overview of the proposed method. Our method uses a probabilistic intensity similarity based on a physics-based image noise
model. We estimate camera response functions by maximizing the similarity measure of images of the same scene computed from the
model-based intensity similarity. We produce estimates of the inverse response functions and data-specific intensity similarity measures.

Throughout this paper, we use the terms input signal and
output signal of a response function. The input signal origi-
nates from the scene radiance and is considered the input to
the response function. This signal is converted into a digital
output signal by a series of circuits including a photodetec-
tor, amplifiers, and possibly signal processing blocks. This
output signal is the measured pixel intensity in images. We
normalize the input and output ranges of the response func-
tions.

The rest of this paper is organized as follows: after re-
viewing prior work in Section 2, we describe the theoreti-
cal background and our estimation method in Section 3. In
Section 4, we describe implementation details. In Section 5
we show experimental results to verify the effectiveness of
the method and present some of its applications. Section 6
concludes the paper.

2. Prior work

One class of methods for estimating response functions
uses knowledge of irradiance ratios for measured intensi-
ties. The Macbeth color checker is used for estimating the
response functions by several research groups such as [2].
Nayar and Mitsunaga [16] use an optical filter with spatially
varying transmittance; the variation corresponds to the irra-
diance ratio. To avoid using such special equipment, some
methods use a set of images of a static scene from a fixed
viewpoint, taken with different exposure times, so the ir-
radiance ratio is known. These methods are classified into
parametric and non-parametric approaches.

In the parametric framework, Mann and Picard [12] pro-
pose a method that assumes the response functions can be
approximated by gamma correction functions. Mitsunaga
and Nayar use a polynomial function for the representa-
tion [15]. Grossberg and Nayar apply principal component
analysis (PCA) to a database of real-world response func-
tions (DoRF) and show that the space of response functions
can be represented by a small number of basis functions [5].
Mann [11] uses a comparametric equation that relates two
input images taken with different exposure times.

Debevec and Malik estimate response functions with
a non-parametric representation using a smoothness con-

straint [3]. Tsin et al. robustly estimate non-parametric
forms of response functions using the statistics of image
noise [19]. Pal et al. use a Bayesian network consisting
of probabilistic imaging models and prior models of re-
sponse functions [18]. While non-parametric approaches
have greater descriptive power, the large number of un-
knowns often lead to computationally expensive or unstable
algorithms.

A few authors have proposed more general estimation
methods that allow camera motion or scene motion between
input images. Grossberg and Nayar [4] propose a method
that allows a small amount of motion in the scene. Their
use of the brightness histograms efficiently avoids the prob-
lem of pixel-wise image registration. Kim and Pollefeys [7]
propose a method that allows free camera motion by finding
the correspondences between images. While these methods
can estimate the function from less restricted setups, they
still require images taken with multiple different exposures.

Another class of the estimation methods is based on the
physics of the imaging process. Lin et al. [8] estimate the
response function by analyzing the linear blending of col-
ors along edges in images. For grayscale images, a 1D ana-
logue of the 3D color method is presented in [9]. While
the use of spatial color mixtures has theoretical importance,
these authors note that image noise can be a major problem.
Matsushita and Lin later proposed a noise-based method us-
ing the assumption that profiles of input noise distributions
are symmetric [14]. Although the method is robust against
noise, it generally requires a large number of images of a
static scene to collect noise distributions. If the scene con-
tains many uniformly colored, uniformly illuminated, flat
surfaces, then one image can suffice. This limits its appli-
cability only to videos in practice. Our method is a noise-
based method as well, but in contrast to the prior work it
only requires a small number of images of a natural scene.

3. Method

In this section we first provide the theoretical relation-
ship between the response function and probabilistic inten-
sity similarity. We then describe the algorithm for estimat-
ing response functions.
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Figure 2. Relationship between inverse response function and
probabilistic intensity similarity. The graphs in the left column
show inverse response function shapes. The plots in the right col-
umn show the intensity similarity measures for any two pixel val-
ues. The similarity measure is color-coded as indicated by the bar
on the right. These plots show how the intensity similarity varies
with the inverse response function.

3.1. Response functions and intensity similarity

Our method uses the probabilistic intensity similarity
proposed by Matsushita and Lin [13]. The intensity simi-
larity represents the likelihood of two observations deriving
from the same scene radiance. As pointed out in their work
as well as by Liu et al. [10], probability density functions
of image noise distributions vary with the scene radiance.
Nonlinear camera response functions also alter the intensity
similarity function. In fact response functions and the inten-
sity similarity measure are closely related. Figure 2 shows
how the intensity similarity varies with the shape of the re-
sponse function.

The intensity similarity SO(O1, O2) between two mea-
sured intensities O1 and O2 is defined in [13] as

SO(O1, O2) =
∫
p(O1|Õ)p(O2|Õ)p(Õ)dÕ, (1)

where Õ represents the noise-free output intensity, the prob-
ability density function (pdf) p(Õ) is the prior distribution
of having a noise-free output intensity Õ in the scene, and
the conditional density function (cdf) p(O|Õ) describes the

probability of observing the intensityO when the noise-free
intensity is Õ. The similarity in the input domain SI(I1, I2)
is defined in the same manner. Now we derive the rela-
tionship between the intensity similarity in the input and
output domains. For the derivation, we use the transforma-
tion of pdf’s from output to input domain. For all outputs
O = f(I), the pdf in the output domain p(O) and its trans-
formation p(I) in the input domain satisfy the following re-
lationship:

p(I)dI = p(O)dO.

Using dO = f ′(I)dI , we obtain

p(I) = f ′(I)p(O). (2)

The cdf p(I|Ĩ) in the input domain can be transformed in
a similar manner. Using Equation (2), Equation (1) can be
written as:

SO(O1, O2) =
∫
p(O1|Õ)p(O2|Õ)p(Õ)dÕ

=
∫
p(I1|Ĩ)
f ′(I1)

p(I2|Ĩ)
f ′(I2)

p(Ĩ)
f ′(Ĩ)

f ′(Ĩ)dĨ

=
1

f ′(I1)f ′(I2)

∫
p(I1|Ĩ)p(I2|Ĩ)p(Ĩ)dĨ

=
1

f ′(I1)f ′(I2)
SI(I1, I2), (3)

where I1 = g(O1) and I2 = g(O2). This equation shows
that the intensity similarities in the input and output do-
mains are related by the first-order derivatives of the re-
sponse function.

3.2. Image similarity

As described above, our method estimates camera re-
sponse functions from the similarity among several images.
Suppose we have as input a set of images of the same scene
taken from the same viewpoint with the same camera pa-
rameters. Using all pairs of pixels from different images
with the same pixel coordinates, we can compute the cdf’s
of the observations and the image similarity measures in the
output domain.

We begin by defining the image similarity in the input
domain as follows:

E1
def=

1
Z

∫∫
p(I1|I2)SI(I1, I2)dI1dI2, (4)

where p(I1|I2) is the likelihood of observing input I1 after
observing input I2 from the same scene radiance. Note that
p(I1|I2) and SI(I1, I2) cannot be directly computed from
the observed images. We explain how the observed images
and the physics-based noise model are used in this equation
in Section 3.3 and Section 3.4, respectively. In Equation (4),



the normalization term Z is defined as

Z =

√∫∫
(SI(I1, I2))

2
dI1dI2.

By defining the similarity in the input domain, we can eval-
uate Equation (4), despite varying camera specifications.

Equation (4) can be viewed as the sum of the intensity
similarity SI over all inputs weighed by the cdf p(I1|I2).
The weighting is derived by normalizing the joint distribu-
tion of I1 and I2 by the probability density of observing
either I1 or I2. For example, in the case that p(I2) is used
for normalization, we have

p(I1|I2) =
p(I1, I2)
p(I2)

.

3.3. Estimation method

Now we transform Equation (4) to the output domain.
p(O1|O2) is more suitable for estimating response functions
because we can compute it from image measurements. Us-
ing Equation (2), Equation (4) becomes:

E2 =
1
Z

∫∫
1

g′(O1)
p(O1|O2)SI(g(O1), g(O2)) (5)

g′(O1)g′(O2)dO1dO2

=
1
Z

∫∫
g′(O2)p(O1|O2)SI(g(O1), g(O2))dO1dO2.

The image similarity measure E2 evaluates how similar im-
ages are. If the correct response function g is assumed, the
image similarity E2 of our input images is expected to be-
come high because the only fluctuations are image noise.

In Equation (5), p(O1|O2) is treated as a known param-
eter because it is directly measured from the input images.
Our goal is to estimate the two unknown parameters g and
SI . We formulate the estimation problem in an energy max-
imization framework as

(ĝ, ŜI) = argmax
g,SI

E2(g, SI),

where ĝ and ŜI , respectively, are the estimates of the inverse
response function and data-specific intensity similarity in
the input domain.

3.4. Modeling intensity similarity

In practice, it is difficult to treat SI(I1, I2) in Equa-
tion (5) in a nonparametric form. To parameterize
SI(I1, I2), we use the physics-based noise model described
by Healey and Kondepudy [6]. As described in [6], the in-
put I with sensor noise can be written as

I = aP +NDC +NS +NR,

where a is a factor of photon-to-electron conversion effi-
ciency with amplification, and P is the number of photons.
NDC , NS , and NR indicate dark current noise, shot noise,

and readout noise, respectively. Without noise, the noise-
free input Ĩ equals aP . Assuming the noise sources are
independent, the cdf p(I|Ĩ) is the convolution of the noise
distributions.

Shot noise is known to obey a Poisson distribution. We
assume natural lighting conditions where a large number of
photons are available. The profile of the Poisson distribu-
tion approaches a Gaussian distribution as the number of
events increases, so we can approximate the Poisson distri-
bution by a Gaussian distribution with zero-mean and vari-
ance AĨ, where A is some positive real number. The dis-
tributions of the dark current noise and the readout noise
also follow Gaussian distributions. Assuming these noise
sources are independent, the combined noise model can be
represented as a single normal distribution whose average
is zero and variance is some real number B. As a result,
p(I|Ĩ) can be written as

p(I|Ĩ) =
1√

2π(AĨ +B)
exp

(
− (I − Ĩ)2

2(AĨ +B)

)
. (6)

We compute the similarity SI(I1, I2) is calculated using a
numerical approximation of the integral, such as the mid-
point method, from this equation:

SI(g(O1), g(O2)) = SI(I1, I2) (7)

=
∫
p(I1|Ĩ)p(I2|Ĩ)p(Ĩ)dĨ.

In the above equation, p(Ĩ) is considered a uniform distri-
bution [13]. In this way, SI(I1, I2) can be parameterized by
only two variables A and B.

4. Implementation
This section describes two key points of our implemen-

tation: the parameterization of the response functions and
the solution algorithm.

4.1. Representation of inverse response functions

To reduce the computational cost, we represent the in-
verse response functions using the parametric model pro-
posed by Grossberg and Nayar [5]. We chose this parame-
terization because of its compactness and ease of use. Al-
though we use this parameterization, we do not use the prior
distributions in our energy function for estimating the re-
sponse function. Grossberg and Nayar use principal compo-
nent analysis (PCA) of the database of real-world response
functions (DoRF) to obtain a small number of eigenvectors
that represent the space of the response functions. Using
the principal components, we represent the inverse response
function g as g = g0 + Hc, where g0 is the mean vector of
all the inverse response functions, H is a matrix in which a
column vector represents an eigenvector, and c is a vector



of PCA coefficients. Following the original paper [5], we
use the first five eigenvectors. With this representation, the
number of unknown variables decreases significantly, e.g.,
from 256 to 5 in the case of 8-bit images. Our method is not
restricted to this parameterization. Other parameterization
methods such as polynomial representations [15] could also
be used.

4.2. Maximization of image similarity

We maximize the image similarity measure defined
in Equation (5) using an iterative alternating algo-
rithm. We continue the following steps until convergence:

Algorithm: Maximization of E2

Input: Images taken from the same viewpoint with fixed
camera parameters.
Output: Inverse response function ĝ and data-specific sim-
ilarity ŜI .
Initialize the similarity measure in the input domain
SI(I1, I2) using Equations (6)(7) with initial parameters A
and B.
Repeat until E2 converges do

1. Maximize E2 with the fixed input similarity function
SI(I1, I2) to estimate the inverse response function g
with ĝ = argmaxg E2.

2. Update g: g ← ĝ.
3. Fix the inverse response function g and maximize E2

according to ŜI = argmaxSI
E2. Note SI is parame-

terized by A and B.
4. Update SI : SI ← ŜI by updating A and B.

done

We use the Matlab fminsearch algorithm, an imple-
mentation of the Nelder-Mead Simplex method [17]
to maximize the energy function. We empirically set
A = 0.06 and B = 1 as the initial values for 8-bit images.
The maximization usually converges within ten iterations.
Like all multi-dimensional non-linear optimization prob-
lems, our optimization can converge to a local maxima.
We try to avoid this by restarting the optimization from
neighborhoods of the current best estimate.

5. Experiments
We used two different conditions to evaluate the perfor-

mance of the proposed algorithm. The first uses multiple
images taken by a fixed camera with the same camera pa-
rameter settings, and the second uses only a single image.
These two setups differ only in the way of computing the
cdf’s p(O1|O2) of the input dataset.

5.1. Multiple-image case

In this experiment, we run our algorithm using mul-
tiple shots of a static scene captured from a fixed view-

point with the same camera parameters. We compute a
histogram h(O1, O2), which represents the co-occurrence
of two output intensity values O1 and O2, by gathering all
pairs of pixels with the same pixel coordinates. The cdf’s
of the image intensities p(O1|O2) are obtained from the his-
togram h by:

p(O1|O2) =
h(O1, O2)∑
O2
h(O1, O2)

.

Results We used the following four cameras for this
experiment: Point Grey Dragonfly2 (Camera A), Sony
DCR-TRV9E Video camera (Camera B), Sony DCR-
TRV900NTSC Video camera (Camera C), and Canon EOS
Kiss Digital, the original model (Camera D). For estimat-
ing the response function of camera D, we used six images
(3072× 2048 pixels with ISO 400 gain level). For the other
cameras, we used ten video frames (Camera A 640 × 480
pixels, Camera B 720×576 pixels, and Camera C 720×480
pixels). These are considerably fewer images than were
used by the prior noise-based estimation method [14].

To obtain ground truth inverse response functions for
Cameras A and D, we used Mitsunaga and Nayar’s
method [15]. Cameras B and C do not have exposure con-
trols, so we computed their response functions using the
Macbeth color checker-based method [2].

Figure 3 shows typical results of our method. The im-
ages in the first column are the scenes used for the ex-
periment. The second column shows the cdf’s p(O1|O2)
obtained from the input data. The third column shows
the estimated intensity similarity in the input domain, and
the fourth column shows the plot of the estimated inverse
response functions and the corresponding ground truth
curves. The horizontal and vertical axes represent normal-
ized output and input, respectively. These results verify the
accuracy of our method; the estimated curves are very close
to the ground truth curves.

Table 1 summarizes the results of the experiment. For
each camera, three different scenes are used. Because the
algorithm is applied to the RGB channels independently, we
use 9 datasets for each camera. The disparity is the mean of
the maximum differences in the normalized input domain.
These results verify the stability as well as the accuracy of
our method.
Estimation accuracy and the number of images We
performed another experiment to observe the relationship
between the number of images and the estimation accuracy.
One would expect higher accuracy as more images are used
because of the increased statistical stability. We ran our al-
gorithm using two, five, ten, and twenty frames from Cam-
era C. For each run, we used 9 different datasets. Figure 4
shows the results. We see a slight improvement in accuracy
with increasing numbers of images, but the improvement is
not significant. Thus, our method works well with a small
number of images.
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Figure 3. Results of estimating camera response functions from multiple images. From left to right, the first column shows an image from
the dataset. The second column shows the computed cdf p(O1|O2). The estimated intensity similarity and inverse response functions
are shown in the third and fourth column, respectively. The estimated inverse response function is plotted with a red solid line, while the
ground truth is plotted with a blue dotted line.
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Figure 4. Plot of the number of images versus estimation accuracy.
It shows our method performs well even with a small number of
images.

5.2. Single-image case
We further extend our method to handle a single-image

case. The estimation algorithm is the same, but we use a
different means to compute the cdf p(O1|O2) because we

do not have registered pixel pairs.
As in [14], we assume that the scene contains a suffi-

ciently large portion of uniformly colored regions. In this
experiment, histograms h are obtained from spatially pair-
ing neighboring pixels. We used four neighbors; up, down,
left, and right. To efficiently gather pixel pairs, we evaluate
the pixel similarity by a normal distribution with standard
deviation σ in intensity differences for each color channel.
The values of σ in the images used for this experiment were
between 7 and 9, which tended to increase with increasing
the ISO gain level. We use only pixel pairs whose similar-
ity is within 3σ in the distribution. While it may contain
outliers in the histogram h, the frequency is expected to be
dominated by pixel pairs with the same scene radiance.
Results For this experiment, we used Camera D with
three different gain levels: ISO 400, 800, and 1600. A larger
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Figure 5. Result of estimating red channel inverse response functions from a single image. From left to right, we show the input image and
the results for ISO 400, ISO 800, and ISO 1600.

Table 1. Mean RMSE and disparity of the estimated inverse re-
sponse functions in the the normalized input domain. Three dif-
ferent scenes were used for each camera.

Camera Mean RMSE Disparity
A. Dragonfly 0.0068 0.011
B. DCR-TRV9E 0.026 0.049
C. DCR-TRV900NTSC 0.017 0.032
D. EOS Kiss Digital 0.025 0.046
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Figure 6. The relationship between ISO level and RMSE (left) and
between ISO level and maximum difference (right).

ISO setting corresponds to a higher noise level.
Figure 5 shows the red channel estimation results with

different ISO gain levels. We used the same scene to com-
pare the different gains. At the ISO 1600 gain level, the
estimation result is entirely satisfactory, even though only a
single image is used. In contrast to the other single-image
methods [8, 9, 14], our method does not use any special im-
age processing such as edge detection and image segmen-
tation, nor does it require a prior model of the inverse re-
sponse functions.

5.3. Applications

In this sub-section, we introduce applications of our
method. We can estimate not only camera response func-
tions but also the function of probabilistic intensity similar-
ity. As a use of the estimated response function, we first
show the result of linearization of image intensity. Next, we
show the result of edge detection using the estimated prob-
abilistic intensity similarity.
Linearization of image intensity Figure 7 shows the re-
sult of intensity linearization for image taken by Camera D.

Before calibration After calibration

Figure 7. The result of intensity linearization using the estimated
camera response functions for Camera D.

For linearization, we estimated the inverse response func-
tions of the RGB channels independently. We use I = g(O)
to produce the linearized image shown on the right.
Edge detection We show in this application the effective-
ness of our estimated intensity similarity measure for edge
detection. We used a 3 × 3 four-neighbor Laplacian filter,
i.e., [0,−1, 0;−1, 4,−1; 0,−1, 0]. The Laplacian operation
at some pixel p is written as∑

q∈adj(p)

d(O(p), O(q)),

where adj(p) is a set of neighboring pixels of p,O(p) is the
intensity value at pixel p, and d(O1, O2) is a signed distance
metric between O1 and O2. The standard definition of the
metric is their difference, i.e., d(O1, O2) = O1−O2. Using
the probabilistic intensity similarity measure, it becomes

d(O1, O2)
def= − log(SO(O1, O2)),

as described in [13]. We transform the similarity measure
from the input to the output domain according to Equa-
tion (3). Thresholding after convolving with the Laplacian
filter produces a binary edge image.

Figure 8 shows the comparison between the two metrics
for edge detection using a noisy input image. The threshold
for the binarization was carefully tuned to produce the vi-
sually best result; we used 22 for the standard metric and
40 for our metric. The intensity similarity measure pro-
duces a better result. Because our proposed method com-
putes data-specific intensity similarity measures as well as
response functions, it enables edge detection that is robust
to noise. As in [10], we can perform this type of noise-
adaptive image processing on any images that are suitable
for our single-image method.
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Figure 8. Result of edge detection from a noisy image (ISO-1600) taken by Camera D. The Laplacian filter is used with two different
metrics: the standard intensity difference and probabilistic intensity similarity.

6. Conclusions
We have proposed a method for estimating camera re-

sponse functions by maximizing the image similarity mea-
sure defined as the integral of the probabilistic intensity sim-
ilarity. Using the image similarity, our method can estimate
inverse response functions from only a few images. We also
presented an extension that handles the single-image case.

Our experimental results for both the multiple and single
image cases quantitatively demonstrate the effectiveness of
the proposed algorithm. Our method does not require any
prior knowledge about the inverse response functions, un-
like [8, 9, 14]. In the future, we plan to explore cases where
the physic-based noise model no longer holds, such as low-
light conditions.
Limitations Our method uses a physics-based image
noise model [6]. Therefore, if the noise distribution devi-
ates from this model as described in [1], our approach may
produce inaccurate estimates. The single-image method de-
scribed in this paper assumes a scene containing many local
planar patches of uniform colors. If the scene does not fit
this assumption, e.g., gradient-colored surfaces, the method
may produce an unsatisfactory result. Note that this as-
sumption is not required for the multiple-image case.

Since our method uses noise observations, it is unable to
perform the estimation from noise-free images. In practice,
noise is always present. Our experimental result suggests
that the method works well with noisier images, however,
this tendency is expected to be capped at a certain noise
level. For future work, we plan to explore the upper bound
of the noise level where the method still works.
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