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Abstract. This paper presents an online learning algorithm for appearance-
based gaze estimation that allows free head movement in a casual desk-
top environment. Our method avoids the lengthy calibration stage using
an incremental learning approach. Our system keeps running as a back-
ground process on the desktop PC and continuously updates the estima-
tion parameters by taking user’s operations on the PC monitor as input.
To handle free head movement of a user, we propose a pose-based clus-
tering approach that efficiently extends an appearance manifold model
to handle the large variations of the head pose. The effectiveness of the
proposed method is validated by quantitative performance evaluation
with three users.

1 Introduction

Gaze estimation is a process of detecting the position the eyes are looking at.
It has been an active research topic in computer vision because of its useful-
ness for a wide range of applications, including human computer interaction,
marketing studies and human behavior research. However, despite considerable
advances in recent research, current gaze estimation techniques still suffer from
many limitations. Creating an accurate gaze estimator that uses simple and low-
cost equipment with allowing users to move their heads freely is still an open
challenge.

Prior approaches are either model-based or appearance-based. Model-based
approaches use an explicit geometric model of the eye, and estimate its gaze
direction using geometric eye features. For example, one typical feature is the
pupil-glint vector [1, 2], the relative position of the pupil center and the specular
reflection of a light source. While model-based approaches can be very accurate,
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they typically need to precisely locate small features on the eye using a high-
resolution image and often require additional light sources. This often results in
large systems with special equipment that are difficult to implement in casual,
desktop environments.

Appearance-based approaches directly treat an eye image as a high dimen-
sional feature. Baluja and Pomerleau use a neural network to learn a map-
ping function between eye images and gaze points (display coordinates) using
2,000 training samples [3]. Xu et al . proposed a similar neural network-based
method that uses more (3,000) training samples [4]. Tan et al . take a local in-
terpolation approach to estimate unknown gaze point from 252 relatively sparse
samples [5]. Recently, Williams et al . proposed a novel regression method called
S3GP (Sparse, Semi-Supervised Gaussian Process), and applied it to the gaze es-
timation task with partially labeled (16 of 80) training samples [6]. Appearance-
based approaches can make the system less restrictive, and can also be very
robust even when used with relatively low-resolution cameras.

Among model-based methods, one popular approach that handles head move-
ments is to use multiple light sources and camera(s) to accurately locate 3D eye
features. Shih and Liu used both multiple cameras and multiple lights for 3D
gaze estimation [7]. Zhu et al . use a stereo camera setup with one light source to
locate the 3D eye position and estimate 2D gaze positions by considering a gen-
eralized gaze mapping which is a function of the pupil-glint vector and the eye
position [8, 9]. Morimoto et al . propose a single camera method with at least two
lights, but show only simulated results [10]. Hennessey et al . develop a similar
system with multiple light sources to locate the 3D cornea center by triangula-
tion, and compute the gaze point as the 3D intersection of the monitor surface
and the optical axis of the eye [11]. Yoo and Chung use a structured rectangular
light pattern and estimate the gaze point from the pupil’s position relative to
the rectangle [12]. Coutinho and Morimoto later extended this method with a
more precise eye model [13].

In addition to 3D eye features, some methods also use 3D head pose infor-
mation. Beymer and Flickner, for example, use a pair of stereo systems [14]. The
first stereo system computes the 3D head pose, which is then used to guide a
second stereo system that tracks the eye region. Matsumoto et al .’s method uses
a single stereo system to compute the 3D head pose and estimate the 3D posi-
tion of the eyeball [15]. A similar approach is also taken by Wang and Sung [16].
These approaches all require special equipment, preventing their use in casual
environments.

Among the appearance-based approaches, little study has been dedicated to
dealing with changes in head pose. Baluja et al .’s method allows some head
movement by using training samples from different head poses, but the range of
movement is limited. They describe two major difficulties. One is that the ap-
pearance of an eye gazing at the same point varies drastically with head motion.
Additional information about the head pose is needed to solve this problem. The
second difficulty is that the training samples must be collected across the pose



space to handle the head movement. This results in a large number of training
samples and an unrealistically long calibration period.

Our goal is to make a completely passive, non-contact, single-camera gaze
estimation system that has no calibration stage yet still allows changes in head
pose. To achieve this goal, we develop a new appearance-based gaze estimation
system based on an online learning approach. We assume a desktop environment
with a PC camera mounted on the monitor, and observe the fact that the user can
be assumed to look at the mouse when he or she clicks. Our system incorporates
recent advances in robust single-camera 3D head pose estimation to capture the
user’s head pose and the eye image continuously. By using the clicked coordinates
as gaze labels, the system acquire learning samples in the background while
users use the PC. Thus, it can learn the mapping between the eye and the gaze
adaptively during operation, without a long preliminary calibration.

This work has the following major contributions:

– An incremental learning framework: To eliminate the lengthy calibra-
tion stage required for appearance-based gaze estimators with free head
movement, we employ an incremental learning framework using the user’s
operations on the PC monitor.

– A pose-based clustering approach: We take a local interpolation-based
approach to estimate the unknown gaze point. To use the gaze distance
to constrain the appearance manifold in the pose-variant sample space, we
propose a method using sample clusters with similar head poses and their
local appearance manifold for the interpolation. The details are described in
Section 3.

The outline of the rest of the paper is as follows. In Section 2 we describe the
architecture of our system. Section 3 explains our incremental learning algorithm
with local clusters. Section 4 provides experimental results, and Section 5 closes
with a discussion of the potential of our method and future research directions.

2 Overview

Our gaze estimation system operates in a desktop environment with a user seated
in front of a PC monitor, and with a PC camera mounted on the monitor. We
assume that the user’s gaze is directed at the mouse arrow on the monitor when
he or she clicks the mouse, so we collect learning samples by capturing eye images
and mouse arrow positions for all mouse clicks. The architecture of the system
is summarized in Fig. 1. The input to the system is a continuous video stream
from the camera. The 3D model-based head tracker [17] continuously computes
the head pose, p, and crops the eye image, x, as shown in Fig. 2. At each mouse
click, we create a training sample by using the mouse screen coordinate as the
gaze label g associated with the features (head pose p and eye image x). Using
this labeled sample, our system incrementally updates the mapping function
between the features and the gaze. This incremental learning is performed in a
reduced PCA subspace, by considering sample clusters and the local appearance



Fig. 1. Learning and prediction flow of the proposed framework.

manifold. The details are described in Section 3. When the user is not using the
mouse, the system runs in a prediction loop, and the gaze is estimated using the
updated mapping function.

2.1 Head tracking and eye capturing

Here we describe in detail how we capture input features. As stated above,
our framework uses the head tracking method of Wang et al . [17]. The tracker
estimates the head pose of a person from a single camera, using a 3D rigid facial
mesh. The tracker outputs the user’s 7-dimensional head pose p = (tT , rT )T ,
where t is a 3-dimensional translation and r is a 4-dimensional rotation vector
defined by four quaternions. The facial mesh in Fig. 2(a) shows an estimated
head pose.

The system converts the input image to gray-scale, then crops the eye region
as follows. First, it extracts an eye region (the rectangle in Fig. 2(a)) that is
predefined on the facial mesh. It then applies a perspective warp to crop the
region as a fixed size rectangle. Fig. 2(b) shows the warped result, Isrc. The
offset of the eye is still too large for this image to be a useful feature.

We reduce this offset error using a two-stage alignment process. For the initial
alignment, we apply a vertical Sobel filter to the cropped image, then threshold
to create a binary image. We then crop a W1 × H1 image region I1 from Isrc

such that the cropped image center corresponds to the average coordinate of the
edge points. At this time, we also do some preliminary image processing. We
apply histogram equalization to the image, then truncate higher intensities to
eliminate the effects of illumination changes. We also apply a bilateral filter to
reduce image noise while preserving edges. After this, we improve the alignment
using image subspaces. Specifically, we choose the W2 × H2 (W2 < W1 and
H2 < H1) image region I2 that minimizes the reconstruction error

E = ||I2 − Í2||2. (1)



Fig. 2. Capturing results. (a) Head pose estimation result. (b) Cropping result around
predefined eye region on the facial mesh (the rectangle in (a)). (c) Eye alignment and
image preprocessing result (the image feature used in our gaze estimator.)

Here Í2 is the approximated version of I2 using the PCA subspace. As described
later, this subspace is updated incrementally using labeled samples.

Fig. 2(c) shows the final result of the cropping process, raster-scanned to
create an image vector x. In our experiment, the size of the final image is set to
W2 = 75 × H2 = 35 pixels, so x is 2625-dimensional. Finally, we compose the
feature vector f = (xT ,pT )T , which consists of the eye image x and the head
pose p.

3 Gaze estimation

The goal of our gaze estimator is to learn the mapping between the feature
vector f and the gaze g. We use a local linear interpolation method similar
to [18, 5]. Given an unlabeled feature ḟ , we predict the unknown label ġ by
choosing k nearest neighbors from the labeled samples and interpolating their
labels using distance-based weights. For our application, it is critical to choose
neighbors from a manifold according to the gaze variation. Tan et al . [5] use
2D topological information about the gaze points as constraints. Two points are
assumed to be neighbors on the manifold if they are also neighbors in the gaze
space. However, this assumption is not always satisfied in our case, because there
can be many samples which have different head poses but the same gaze point.
To overcome this problem, we construct sample clusters with similar head poses
and consider a local manifold for each sample cluster. The architecture of the
clusters is partially inspired by Vijayakumar et al .’s work [19].

The distance measure of the cluster, i.e., how close the head pose and the
cluster are, is defined as a Gaussian function:

g(p) =
∏

i

1√
2πκgσ2

p,i

exp

(
− (pi − p̄i)2

2κgσ2
p,i

)
, (2)



Algorithm 1 Cluster-based gaze estimation.

Learning: given tth labeled sample ft = (xT
t , pT

t )T and gt

Update image subspace using incremental PCA: mean x̄(t), eigenvectors U (t), eigen-
values –(t), coefficients A(t). xt ≈ x̄(t) + U (t)at.
for k = 1 to K do

if gk(pt) > τg then
Add sample to the cluster

end if
end for
if No gk(pt) is above threshold then

Create new K + 1th cluster and add sample
end if

Prediction: given unlabeled feature ḟ = (ẋT , ṗT )T .

Project image ẋ into current subspace: ȧ = U (t)T (ẋ − x̄(t))
for k = 1 to K do

Calculate interpolated gaze ġk and a prediction confidence ck

end for
Get final prediction as a weighted sum: ġ =

∑
k

ckġk/
∑

k
ck.

where pi is the ith element of the pose p, and p̄i and σ2
p,i are the correspond-

ing average and variance calculated from the samples contained in the cluster.
The constant weight κg is empirically set. The framework is outlined in Algo-
rithm 1. Given a labeled sample, the image xt is first used to update the PCA
subspace. We use the algorithm of Skocaj et al .[20] to update all stored coeffi-
cients a1 . . . at. After updating the subspace, the sample is added to all clusters
whose weight gk(pt) is higher than the predefined constant threshold τg. In Al-
gorithm 1, K is the total number of clusters at the time. If no suitable clusters
are found, we create a new cluster containing only the new sample. Given an
unlabeled feature, the output gaze ġ is calculated as a weighted sum of predic-
tions from each cluster. The following sections describe the processes executed
in each cluster.

3.1 Learning

Here, we describe the learning process in detail. As stated above, the labeled
sample st = {at,pt, gt} is added to a cluster only when its pose pt is sufficiently
close to the cluster average. However, this rule cannot reject outliers (e.g., a
mouse click without user’s attention). Moreover, the sample density can increase
too much if all samples are stored in the cluster. For interpolation, the sample
distribution in the gaze space does not have to be too dense. For these reasons,
we introduce another constraint on the local linearity between the image distance
d
(i,j)
a = ||ai −aj || and the gaze distance d

(i,j)
g = ||gi − gj ||. We define a linearity

measure l(si) for the sample si as the correlation between d
(i,j)
a and d

(i,j)
g among

{sj |d(i,j)
g < r1}. Here, r1 is the distance threshold. The sample selection rule



Fig. 3. Gaze triangulation example shown in the screen coordinates. Each eye image
(flipped horizontally for presentation clarity) is located at the corresponding gaze point,
and the lines indicate Delaunay edges between these gaze points.

is as follows. If there is more than one sample around the new sample st, i.e.,
{sj |d(t,j)

g < r2} �= ∅ (r2 < r1), keep the sample with the highest l(s) and reject
the others. The threshold r2 controls the sample density and should be chosen
according to the size of the target display area and the memory capacity.

Next, we update cluster mean p̄k and the variance σ2
k (in Eq.(2)) to fit the

current sample distribution. Furthermore, we compute a Delaunay triangulation
of the gaze point for the current point set. Fig. 3 shows an example triangulation.
Each point corresponds to the 2D coordinate of the gaze point. This topological
information is used in the prediction process.

3.2 Prediction

When the unlabeled data ȧt and ṗt are given to the cluster, the system predicts
the unknown gaze ġk by interpolation.

The neighbors to be used for interpolation are chosen on the manifold. The
system selects a closest triangle (concerning an average distance da between
three vertices) to ȧt to the local triangulation. Points adjacent to this triangle
are also chosen as neighbors.

Using the chosen set N , interpolation weights w are calculated to minimize
a reconstruction error:

w = argmin
w

||ȧ −
∑
i∈N

wiai||2, (3)

subject to ∑
i∈N

wi = 1. (4)

wi denotes the weight corresponds to the ith neighbor. Finally, under the as-
sumption of local linearity, the gaze ġk is interpolated as

ġk =
∑
i∈N

wigi. (5)



Table 1. Actual range of head motion for each target user. The rotation is defined as
a quaternion qw + qxi + qyj + qzk.

Translation [mm] Rotation
x y z qw qx qy qz

Person A 170 47 169 0.134 0.011 0.058 0.202
Person B 220 54 203 0.211 0.027 0.342 0.351
Person C 142 32 134 0.242 0.019 0.126 0.277

To reject the outliers from clusters that do not contain sufficient samples, we
define an interpolation reliability measure that represents how well the input ȧ
is described by the selected neighbors:

r(ȧ) = exp

(
−
∑

i

(ȧi − āi)2

2κrσ2
a,i

)
, (6)

where ȧi is the ith element of ȧ, and āi and σ2
a,i are average and variance of

the corresponding element among the neighbors N . The factor κr is empirically
set. The prediction confidence ck of the cluster is defined as a product of the
reliability r(ȧ) and the distance g(ṗ):

ck = r(ȧ) · g(ṗ). (7)

The final prediction result ġ is calculated as a weighted sum of ġk, based on
ck. The value r(ȧ) is useful for measuring the reliability of the current estimate,
so we also output the cluster-weighted average of r(ȧ):

r̄(ṗ, ȧ) =
∑

k

gk(ṗ)rk(ȧ)/
∑

k

gk(ṗ). (8)

4 Experiments

We have conducted some experiments to evaluate our system and the effect of the
proposed cluster-based learning method. Our system consists of VGA resolution
color camera (a PointGrey Dragonfly) and a Windows PC with a 3.00GHz CPU
and 1GB of RAM. In current implementation, the whole process runs at about
10 fps.

In our experiments, no special pattern is used to indicate the learning posi-
tions. Users are simply asked to randomly click on the desktop region without
any unusual attention, but looking at the mouse pointer. This means the ex-
perimental situation is reasonably close to real behavior. During the 10-minute
experiment, users are allowed to freely move their heads. Table 1 shows the ac-
tual range of head motion for each user during the experiments. The estimation
error is evaluated at each time t when a new labeled sample is acquired. Before
adding it to the sample clusters, the angular error θt between the true (clicked)
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Fig. 4. Angular error against prediction reliability. Each graph shows the scatter plot
of the estimation error versus the reliability we defined in Eq.(6) and Eq.(8).

Table 2. Estimation error. The left column is the normal average error, and the cen-
ter column is the weighted average error throughout experiment. The right column
indicates the number of points clicked during the experiments.

Average error [deg] Number of
Normal Weighted clicked points

Person A 5.6 4.4 1796
Person B 7.1 4.4 1748
Person C 6.6 5.8 1095

gaze position gt and the estimated position ġt (interpolation based on the past
labeled samples) is calculated as:

θt = tan−1

(
Dm(gt, ġt)
pz,t − dcam

)
, (9)

where Dm indicates the distance between two points in the metric unit, pz,t is
the depth element of the estimated head pose, and dcam is the pre-calculated
distance between the camera and the display.

First, Fig. 4 shows the angular error θt plotted against the reliability r̄t. We
see that the estimation accuracy increases as our reliability measure increases,
and using this measure we can reject the outliers that have large error. Low
reliability estimates are caused by the absence of labeled samples around the
estimated gaze position. It can be improved if new labeled samples are added
around there, and results with low reliability can be ignored by the system when
a reliable prediction is needed.

Fig. 5 shows the cumulative weighted average (C.W.A.) error
∑t

i=i r̄iθi/
∑t

i=i r̄i

over time. We also show the result of another experiment (the left lower graph)
to validate our cluster-based approach. For this experiment, the system did not
create pose clusters, which is equivalent to normal appearance-based estima-
tion with pose-varying input. Naturally, the C.W.A. error gradually increases.
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Fig. 5. Time variation of the cumulative weighted average (C.W.A.) estimation error.
The lower left graph is the result without the cluster-based solution. The other graphs
show results using our method for three different users.

By contrast, even if the user moves his/her head, the estimation error of our
method (shown in other graphs) does not increase and converges to a certain
range. This shows the effectiveness of our cluster-based solution.

Table 2 shows the average estimation error for three users. The left column
is the normal average error, and the center column is the weighted average error
throughout experiment. The right column indicates the number of points clicked
during the experiments. The angular error of our gaze estimation is roughly 4 ∼ 5
degrees. This accuracy may not be sufficient to replace a mouse with our method
as a user input, however, it is helpful to achieve our goal, i.e., to estimate the
approximate region where the user is looking at.

5 Conclusions

We have proposed a gaze estimation system that learns incrementally as the user
clicks the mouse. When the user clicks somewhere on the display, our system uses
the captured eye image and the head pose to learn the mapping function, with
the clicked coordinate as learning label. Moreover, we extended an appearance
interpolation-based method to the case with free head movement, by clustering
learning samples with similar head poses and constructing their local mani-
fold model. We showed the efficiency and reasonable estimation accuracy of our
method through the experiments in actual environment.



Because our method wholly relies on the image distance between samples, the
estimation accuracy mostly depends on the accuracy of the distance measure-
ment. We employed PCA-based distance measure for the sake of computational
efficiency and implementation simplicity. However, it can be too sensitive to
the appearance variation not related to the gaze, such as cropping shift and
rotation. To diminish this effect, we conducted subspace-based eye alignment
after cropping. Even so, there can be slight jitter and drift of the result. Thus,
the estimation accuracy of our method can be improved by using more precise
alignment, or shift-invariant distance measure method.

Also, we should mention about the memory efficiency of our method. Since
there are no scheme to adjust the number of the sample clusters, memory usage
and computational cost can increase unlimitedly in theory. We verified that it
does not become a major issue in the case of usual desktop environment, but some
kind of reformation will be needed when it is applied to more general situation
with a wide range of head pose. This is partially achieved by wider cluster kernel
(κg in Eq.(2)) or higher threshold to create clusters (τg in Algorithm 1).

In future work, we plan to extend this framework to higher level regression
in the pose space. Our system is less accurate compared to state-of-the-art gaze
estimation methods with an accuracy of less than 1 degree, however it has great
advantage that it allows for free head movement and works with minimal equip-
ment; single camera without additional light source. It has considerable potential
for developing practically ideal gaze estimator, with further investigations.
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