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Abstract—We present a robust radiometric calibration framework that capitalizes on the transform invariant low-rank structure in
the various types of observations, such as sensor irradiances recorded from a static scene with different exposure times, or linear
structure of irradiance color mixtures around edges. We show that various radiometric calibration problems can be treated in a principled
framework that uses a rank minimization approach. This framework provides a principled way of solving radiometric calibration problems
in various settings. The proposed approach is evaluated using both simulation and real-world datasets and shows superior performance
to previous approaches.
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1 INTRODUCTION

THE radiometric response function relates sensor
irradiance and image brightness values. In most

cameras, there exists a non-linear radiometric response
function for purposes such as compressing the dynamic
range of sensor irradiance or adapting to a display’s
non-linear mappings. The non-linearity is intentionally
designed by camera manufacturers for enhancing the vi-
sual quality of recorded images. However, for computer
vision applications, this non-linearity causes problems,
especially when a linear relationship between the sensor
irradiance and the recorded intensity is explicitly as-
sumed. For example, photometric approaches like shape-
from-shading and photometric stereo methods generally
assume a linear (or affine) mapping from the physical
scene brightness to the image intensity. If the non-linear
mapping is not accounted for in such methods, it leads
to unexpected error in the computed results. Therefore,
radiometric calibration is an important first step for
various computer vision algorithms that assume a linear
mapping to make them work correctly.

The problem of radiometric calibration is determining
the non-linear camera response function from observa-
tions. The observations can be multiple images taken
with different exposure times from a fixed camera loca-
tion [1], [2], color distributions around image edges [3],
or color profiles obtained from varying lightings [4].
In all of these cases, recovering radiometric response
functions without additional knowledge or assumptions
is an under-constrained problem. Since these methods
use different observations, they naturally use different
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assumptions and criteria for recovering the response
functions. Our key observation is that a class of ra-
diometric calibration methods rely on a certain linearity
defined in spaces that they use.

Based on this observation, we formulate the radio-
metric calibration problem in a unified and principled
framework. Our method capitalizes on the fundamental
linear dependency of sensor irradiances. Our method
arranges the observations (e.g., multiple images obtained
with different exposure times, or multiple images with
varying illumination, and etc.) in a matrix form, where
a column vector corresponds to an observation vector.
When the linear relationship is observed in such a
matrix, the rank of the matrix ideally becomes one. On
the other hand, when the response function is non-
linear, the matrix generally becomes higher or even full
rank. From this observation, we develop a framework
for radiometric calibration problems using a matrix rank
minimization technique (see Fig. 1).

There are a few benefits from casting the problem in
this manner. First of all, the rank minimization approach
can efficiently avoid the over-fitting problem. While
there exist robust approaches [5] that are not affected by
the over-fitting problem, still the problem is commonly
observed in previous approaches [2] that rely on the
`2-norm minimization. Second, it gives a unified frame-
work for solving the radiometric calibration problem by
explicitly using the linear dependency of the irradiance
vectors. With this framework, various radiometric cali-
bration problems can be treated in the same manner, and
therefore gives a better understanding to the problem.
Third, because of the new formulation, we can utilize an
advanced rank minimization technique that can reliably
derive the solution in a principled manner.

In presenting our work, we begin by briefly describing
the radiometric response function and reviewing related
works.
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Fig. 1. Illustration of our approach. Our method arranges the observations (e.g., multiple images obtained with different
exposure times, or color profiles obtained from image edges, etc.) in a matrix form, where a column vector corresponds
to an observation vector. In the matrix form, the irradiance matrix should be rank-1, while the observations matrix
generally has a higher rank. Our method seeks the inverse response function that transforms the observation matrix
into a low-rank matrix.

1.1 Radiometric response function
The radiometric response function relates the sensor ir-
radiance I and recorded intensity value M (observation)
by

M = f(I). (1)

In the case of color cameras, color channel has an in-
dependent mapping. With assumptions of monotonicity
and continuity, the response function f : R → R can
be uniquely inverted to an inverse response function
g = f−1 if we neglect quantization and clipping error.
Using the inverse response function g, the recorded
intensity values can be linearized by g(M). Since what
is available as input are the observations M , most radio-
metric calibration methods aim at recovering the inverse
response function g. Once we know the inverse response
function g, we can automatically determine the response
function f with the aforementioned assumptions.

1.2 Prior work
There are various approaches for radiometric calibration.
One widely-used approach takes as input a set of images
recorded with varying exposures from a fixed camera.
The early work by Mann and Picard [6] and Debevec
and Malik [1] show that the response function can be
recovered using images acquired by a static camera but
with known exposure ratios. Mann and Picard [6] use a
gamma correcting function to represent response func-
tions. Debevec and Malik [1] assume a smoothness prop-
erty of response functions and estimate them in a non-
parametric manner. Mitsunaga and Nayar’s method [2]
uses a parametric yet flexible representation, i.e., a poly-
nomial representation. Using approximate prior knowl-
edge of the ratios of exposures, their approach iteratively

estimates response functions and accurate ratios of the
exposures. Grossberg and Nayar [7] create a database of
real-world camera response functions (DoRF) and use it
for better representation of response functions. Instead of
taking a set of images, Nayar and Mitsunaga [8] use an
optical mask to capture an image with spatially varying
pixel exposures.

There are a few prior approaches that allow some
camera movement or scene motion. In Mann and Mann’s
method [9], images are taken by a rotating and zooming
camera and the method simultaneously estimates the
response function with a non-parametric model, as well
as the exposure ratios. Grossberg and Nayar [10] use in-
tensity histograms of two images of different exposures
instead of finding exact pixel correspondence for deter-
mining response functions from image sequences with
camera/scene movement. Litvinov and Schechner [11]
propose an approach for simultaneously estimating the
radiometric response, spatial non-uniformity, and gain
variations from an image sequence acquired during
camera motion. Kim and Pollefeys’s method [5] allows
for free movement of the camera and some motion
in the scene by dynamic programming on the joint
histogram built from correspondences. As pointed out
in [5], [10], [11], without the knowledge of exposure
ratios, the estimate still has an exponential ambiguity.
While not unique, such an estimate is still useful for
many applications, such as radiometric alignment, high
dynamic range (HDR) image production, and smooth
image stitching.

Instead of using varying exposures, some approaches
use statistical properties embedded in images to achieve
radiometric calibration. Farid [12] presents a blind
gamma estimation by minimizing specific higher-order
correlations in the frequency domain. Tsin et al.’s
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method [13] estimates non-parametric response func-
tions using a statistical model of the CCD imaging
process. Pal et al. [14] use probabilistic imaging models
and weak prior models for deriving response functions
to produce high-quality HDR images. Ng et al. [15]
present a geometry invariance-based method with a
generalized gamma curve representation for estimating
response functions. Matsushita and Lin [16] propose to
use the symmetric property of image noise by observing
noise distributions contained in images. Takamatsu et
al. [17] improve the noise-based method with a prob-
abilistic intensity similarity measure, which requires a
fewer number of images. In [18], Takamatsu et al. derive
the relationship between the response function and noise
variances, and estimate response functions using the
image noise variance. In a more general setting, Lin et
al. [3] and Lin and Zhang [19] propose methods that take
only a single image as input. Their methods use edges
for obtaining color or gray-scale histogram distributions,
and the optimal inverse response function is determined
by transforming the observed non-linear distributions
into linear distributions. A similar idea is introduced
by Wilburn et al. [20]. Wilburn et al. [20] use temporal
irradiance mixtures caused by motion blur, instead of
spatial mixtures at edges.

There are some other methods which use varying illu-
mination conditions [4], [21], [22], [23]. Manders et al. [21]
use the superposition property of light, and Shafique
and Shah [22] use illumination and geometric invariants.
Kim et al. [23] present a method to use natural lighting
conditions to obtain exposure changes. Shi et al. [4]
perform calibration by linearizing a set of color values
at the same coordinate from images taken under varying
lighting conditions in a photometric stereo setting.

The idea of utilizing low-rank structures in real-world
scenes has been used in various other vision problems.
For example, the low-rank representation is shown to
be useful for face recognition [24], structure from mo-
tion [25], and photometric stereo [26]. In more recent
works, low-rank structure is widely explored in vari-
ous novel applications with an emphasis on advanced
optimization techniques. Peng et al. [27] align multiple
images of objects of interest to a fixed canonical template
to make the measurement on image similarity more
accurate for recognition or classification purposes. These
aligned images naturally bear the low-rank property.
Paladini et al. [28] propose a variant shape model called a
3D-implicit low-rank shape model to represent the shape
and apply it to non-rigid structure from motion. Zhang et
al. [29] propose a transform invariant low-rank texture
to deal with images containing camera projection de-
formations such as affine or projective transformations.
Wu et al. [30] robustly solve photometric stereo in the
presence of large and sparse errors such as specularity
by extracting low-rank structure from the input matrix.
Zhang et al. [31] present a method for estimating a
camera’s intrinsic and extrinsic parameters and lens
distortion from low-rank textures that appear in images.

All these current research works show the variety and
validity of low-rank structures that exist in the real-
world.

A preliminary version of this paper that focuses on
radiometric calibration from multiple-exposure images
appeared in [32]. We extend the work by defining a
unified framework that treats a class of radiometric cali-
bration problems in the same manner. With the proposed
framework, we show that outliers can be efficiently
handled with a simple optimization algorithm. Also, we
perform extensive experiments with carefully redesigned
simulations and in-depth analysis for analyzing the be-
havior of the proposed method.

2 LOW-RANK STRUCTURE IN CALIBRATED
OBSERVATIONS

Our method casts the radiometric calibration problem
as a low-rank structure recovery problem. As described
in the previous section, there are various approaches for
radiometric calibration depending on the type of obser-
vations, e.g., a set of images with varying exposures, a set
of images with varying illuminations, or a single image
that contains irradiance mixtures around edges. We first
show that these radiometric calibration problems that
use the linearity in sensor irradiance can be formulated
as a rank minimization problem.

Suppose we are given a set of observation vectors
{vec(M1), . . . , vec(Mn)} where each observation vector
is defined as a vector of measured intensities vec(Mi) ∈
Rm×1. The numbers m and n represent the number of
elements in each observation vector vec(Mi) and the
number of observation vectors, respectively. We create
an observation matrix D ∈ Rm×n by stacking all the
observation vectors vec(Mi) as

D = [vec(M1) | · · · | vec(Mn)] . (2)

If we know the inverse response function g(= f−1),
the observation matrix D can be transformed into an
irradiance matrix A with a scaling ambiguity by

g ◦D = A = [vec(I1) | · · · | vec(In)] , (3)

where ◦ is an operator that describes the element-wise
mapping, and vec(Ii) ∈ Rm×1 represents an irradiance
vector. For the problems that we discuss, because the
irradiance vectors vec(Ii) should be linearly dependent,
the rank of the irradiance matrix A becomes one. There-
fore, the problem of radiometric calibration can be for-
mulated as determining the inverse response function
g that minimizes the rank of the transformed matrix
g ◦D(= A):

ĝ = argmin
g

rank (A) s.t. A = g ◦D. (4)

This formulation is fairly general and capable of treating
various types of observation vectors in a unified frame-
work. The only requirement is to arrange the observation
vectors in a way that they exhibit linear-dependency



4

after transformation by the correct inverse response
function g. In the following, we describe the usage of this
framework with different types of observation vectors.

2.1 Multiple-exposure case
One of the most widely used radiometric calibration
methods uses multiple images of a static scene taken
from a fixed camera with various exposures, such as Mit-
sunaga and Nayar’s method [2]. In this setting, because
the scene radiance L is constant, the sensor irradiance I
becomes proportional to the exposure time e as

I = kLe ∝ e, (5)

with a constant scaling k. For each exposure, an observa-
tion vector vec(Mi) is created by vectorizing the image of
m pixels, e.g., by arranging recorded intensities in a scan-
line order. Given n different exposures, the observation
matrix D can be created by stacking n observation
vectors as Eq. (2). While we cannot directly observe
the (vectorized) sensor irradiance vec(Ii), we know that
the irradiance is proportional to the exposure time from
Eq. (5). In other words, we know the irradiance matrix
A = [vec(I1) | · · · | vec(In)] becomes rank-1. Therefore,
we can directly use the rank minimization formulation
of Eq. (4) for the radiometric calibration problem in
this setting, i.e., finding the inverse response function g
that best minimizes the rank of transformed observation
matrix g ◦D.

2.2 Varying illumination case
Recently, Shi et al. [4] showed that radiometric calibration
from photometric stereo images can be performed by
linearizing the color profiles. The color profile is defined
as an ordered set of color values in the RGB color
space. Their method capitalizes on the property that
color profiles form straight lines in the RGB color space if
the response function is linear, while non-linear response
functions f bend color profiles to be non-linear. Their
method therefore seeks the inverse response function g
that linearizes all the color profiles that are observed.

It is straightforward to cast their problem into our low-
rank computation scheme. By treating each color profile
as an observation matrix, we can cast the linearization
problem as a matrix rank minimization problem. The
color profile matrix should become rank-1 when the
correct inverse response function is applied.

Given images captured under n different lighting con-
ditions, we can form a color profile matrix D ∈ R3×n

from each pixel location. The number of matrix rows
corresponds to the number of color channels (RGB). For
each of m pixels we have such a matrix Di, i = 1, . . . ,m.
If a correct inverse response function g is found, it
transforms the observation matrix Di to an irradiance
matrix Ai, where the rank of Ai is one. Using all the
pixels, we have an objective function written as:

ĝ = argmin
g

m∑
i=1

rank (Ai) s.t. Ai = g ◦Di. (6)

Notice that it computes a single global inverse response
function g by minimizing the rank of all the color profile
matrices. Thus, the radiometric calibration problem in
this setting can be solved in the same computation
manner as discussed in the previous section.

2.3 Color mixture case

There are radiometric calibration approaches that use
color/irradiance mixtures in an observed image. Lin et
al. use spatial color mixtures around edges [3], and
Wilburn et al. use temporal irradiance mixtures of motion
blur [20]. The color/irradiance mixtures are observed
around image edges where two different radiances are
mixed together due to the limited spatial resolution of
the image array or temporal motion blur. In edge re-
gions, RGB colors are linearly mixed together, however,
observed intensities have non-linearity due to non-linear
response functions. These methods use this property for
estimating the inverse response function by transforming
non-linear edge color distributions to linear ones.

Our method can also be applied to this setting in a
similar manner with the previous varying-illumination
setting. The difference is that a color mixture forms a
line passing through two different color values in the
RGB space, while a color profile always passes through
the origin. To apply our rank-minimization approach, we
translate the color mixture profile so as to pass through
the origin by simply subtracting the RGB value of either
color from the color mixture profile. This operation is
to avoid offsets in the data; in this manner, we convert
the affine problem into a linear problem. After the coor-
dinate transform of the observation matrix, the exactly
same formulation as Eq. (6) can be applied in this setting.

3 CALIBRATION ALGORITHM

To efficiently compute the rank minimization prob-
lem, previous approaches use an approximate solution
method that minimizes a nuclear norm [33], which is
defined as the sum of the singular values ||A||∗

.
=∑n

i=1 σi (A). The nuclear norm minimization turned out
to be an effective computation tool that can be applied
to problems when the transformation does not alter the
magnitude of matrix elements.

In our case, however, nuclear norm minimization can-
not be directly employed because the function g sig-
nificantly alters the absolute values of matrix elements,
and it therefore results in variations of the singular
value magnitudes. When nuclear norm minimization is
directly applied in this setting, the optimization prefers a
degenerate solution where the inverse response function
g tries to turn matrix elements into zero so that the
singular values become smaller. To resolve this issue, we
instead use condition numbers κi, i.e., a ratio of singular
values, defined as

κi(A)
.
= σi(A)/σ1(A), i = 2, 3, . . . , n. (7)
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With the condition numbers κi, we can work with the
relative magnitudes of the singular values that are un-
affected by their absolute magnitudes. Now we approx-
imate the energy functional (4) as a minimization of the
summation of condition numbers as:

ĝ = argmin
g

n∑
i=2

κi (A) s.t. A = g ◦D. (8)

There are two main factors causing rank variations:
non-linearity of response function and image noise. To
see these effects, let us take synthetic response functions
(RF1 − 4) shown in Fig. 2 as an example. The top half
of Table 1 shows condition numbers κ2, . . . , κ5 obtained
from synthetic data that have five different exposure
times for each response function. κall indicate the sum
of condition numbers. Depending on the shape of the
response function, condition numbers vary in the ta-
ble. With the ideal linear response function RF1, all
condition numbers become zero, which indicates rank-1
structure. With other more general non-linear response
functions, however, the condition number κ2 becomes
significantly larger than other condition numbers. This
is commonly observed because of the smooth (or low-
frequency) characteristics of response functions.

In addition, the effect of noise also changes the con-
dition numbers. To investigate of the effect of noise, we
add image noise to the irradiance using a Poisson noise
model [34]. In [34], the Poisson noise ηe is modeled as

ηe
.
= Ie − µ s.t. Ie ∼ fP (Ie|µ) =

µ(Ie)e−µ

(Ie)!
, (9)

where Ie is a noisy observation that follows a Poisson
distribution with a variance µ. The Poisson distribution
is shifted by µ, therefore the mean of image noise ηe is
zero. The variance µ is determined for each irradiance I
as

µ(I) = RII +DI , (10)

where RI is a scalar parameter for signal-dependent shot
noise, and DI refers to dark current noise. We represent
both parameters RI and DI as functions of the camera
gain Cg and empirically determine them as

RI = 0.035Cg, DI = 0.1C2
g , (11)

using images captured from a Point Grey Scorpion cam-
era for this test. The response functions are applied after
adding the noise with the camera gain Cg = 3 to the
irradiances. These signals are quantized at 256 levels,
and then the condition numbers are re-computed. The
average condition numbers of 100 trials are shown in
the bottom half of Table 1. The image noise makes the
condition numbers similar across diverse response func-
tions. It becomes more obvious in the higher condition
numbers, e.g., κ3...κ5, because the noise almost evenly
affects all the condition numbers while the signals in
the higher condition numbers have smaller values. In
the absence of noise, we can achieve the same result
from minimizing κall and minimizing κ2. However, in
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Fig. 2. Reference response functions used for Table 1.
(a) Ideal linear response function (RF1). (b-d) Non-linear
response functions (RF2− 4).

condition number κ2 κ3 κ4 κ5 κall
RF 1 0.0000 0.0000 0.0000 0.0000 0.0000

without RF 2 0.0284 0.0035 0.0009 0.0004 0.0332
noise RF 3 0.1171 0.0186 0.0025 0.0000 0.1383

RF 4 0.0028 0.0000 0.0000 0.0000 0.0028
RF 1 0.0178 0.0127 0.0097 0.0078 0.0480

with RF 2 0.0316 0.0157 0.0140 0.0123 0.0737
noise RF 3 0.1181 0.0258 0.0150 0.0058 0.1646

RF 4 0.0199 0.0107 0.0065 0.0044 0.0416

TABLE 1
Variations of condition numbers w.r.t. response functions

illustrated in Fig. 2. Top half shows the condition
numbers of the response functions RF1− 4. Bottom half

shows the case when noise is added.

the presence of noise, signal-to-noise ratios of the higher
condition numbers rapidly degrade, therefore minimiz-
ing κall as Eq. (8) may cause an over-fitting result. For
example, it shows that κall of RF4 is smaller than κall of
RF1 in Table 1 with noise. From these observations, we
use only the condition number κ2 instead of using all
the condition numbers. Therefore, the objective function
is simplified from Eq. (8) to

ĝ = argmin
g

κ2 (A) s.t. A = g ◦D. (12)

This objective function is different from recent sparse
and low-rank decompositions [27], [29], [30], which are
based on the robust principal component analysis (PCA)
algorithm [33]. The goal of sparse and low-rank de-
composition is to find the minimum rank automatically
in the presence of sparse outliers, while our objective
function finds the best rank-1 matrix in the presence
of noise that is not necessarily sparse. In other words,
we explicitly use the prior knowledge about the rank-
1 structure for efficiently solving the problem in this
setting.

3.1 Monotonicity constraint
In general, response functions as well as inverse re-
sponse functions are monotonic functions. To avoid triv-
ial solutions, we enforce this property during the com-
putation by putting a monotonicity constraint, which is
represented as ∂g/∂D > 0. The constraint can be imple-
mented as either hard or soft constraints. We empirically
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employ a soft constraint because it can be well solved by
a simple optimization method. With this constraint, the
final form of the objective function becomes

ĝ = argmin
g

κ2 (A) + λ
∑
t

H

(
−∂g(t)

∂D

)
s.t. A = g ◦D, (13)

where H(·) is the Heaviside step function (H(x) = 1
when x ≥ 0, and H(x) = 0, otherwise). The derivatives
∂g(t)/∂D are assessed by sampling g(t) at various t in
the range of [0, 1].

3.2 Handling outliers

While we see that our method is robust against high
frequency noise in the previous section, systematic out-
liers can still cause drifting during the optimization. In
radiometric calibration, there exist various outliers due
to misalignment of images, small motions in a scene,
shadows, and so on. We develop a method based on
robust PCA [33] for reliably rejecting these outliers.
Robust PCA decomposes the input data matrix X as

X = Z + S, (14)

where Z is a low-rank matrix, and S is a sparse error
matrix. The solution is obtained by solving

minimize ||Z||∗ + λs||S||1
subject to Z + S = X,

(15)

where λs is a regularization weight.
However, straightforward application of the robust

PCA algorithm is unsuitable for our data because our
data have different characteristics in the matrix than
what robust PCA algorithms address. Because of the
rank-1 structure of irradiance matrices and the low-
frequency nature of response functions, our data has one
dominant singular value. This introduces confusion to
robust PCA in determining the rank of our data, there-
fore it is difficult to set a proper λs for balancing these
two costs. A larger λs favors more outliers remaining
in the low-rank matrix Z, while a smaller λs prohibits
rank variations, and even non-linear response functions
can be treated as an outlier.

For these reasons, we make a simple modification
to the original robust PCA for removing outliers. We
iteratively decompose the matrix X into rank-1 and
high-rank matrices, and apply thresholding to the high-
rank matrix to find outliers according to the statistics
of the high-rank matrix. The statistics are calculated
with an assumption of the Gaussian distribution of rank
deviations from the rank-1 approximation.

We show the outlier rejection process in Algorithm 1.
In the algorithm table, R is a rank-1 matrix, N is a
high-rank matrix, σi is the ith singular value, ui and vi
are ith columns of U and V , respectively, and Ψ is a

Algorithm 1 Outlier Rejection Process
1: procedure OUTLIERREJECTION(X, ρ)
2: Z0 = X
3: while not converged do
4: (U,Σ, V ) = svd(Zk)
5: R = UΣ1V

T = σ1u1v
T
1

6: N = Zk −R
7: dE = Ψρ[N ]
8: Zk+1 = Zk − dE
9: end while

10: return Z∗

11: end procedure

thresholding operator, defined as

Ψρ[ni] =

{
ni if |ni − µN | > ε+ ρsN

0 otherwise,
(16)

where ε is small epsilon value, and µN and sN are
the mean and standard deviation of N , respectively.
The operator is extended to matrices by applying it to
each element. Therefore, only outlier components out of
ρ standard deviations remain in N .

3.3 Ambiguities

The estimated inverse response function ĝ may suffer
from ambiguities that are specific to the calibration set-
ting. For example, a certain class of response functions
f where f(x)/f(ax) = const. holds cannot be handled in
the varying illumination setting [4]. In the color mixture
setting, we cannot determine response functions when
both measured color distribution lies along the R=G=B
line and RGB channel responses are identical [3]. In
practice, these cases are rare while theoretically they
exist.

One of the major ambiguities is exponential ambiguity
in the multiple-exposure setting discussed by Grossberg
and Nayar [10], i.e., if g is a solution for I = g(M),
then gγ can also become a solution as Iγ = gγ(M)
for arbitrary γ. Recovery of the exposure ratios and the
response function is impossible without either making
assumptions on the response function or having rough
estimates on the exposure ratios.

Without making any assumptions about exposure
times, our method can robustly recover the response
function up to the exponential ambiguity from at least
two images. However, our method also suffers from
this exponential ambiguity like other methods when the
exposure times are completely unknown, because the
rank-1 structure is retained even after any exponen-
tial function is applied. In short, if rank(I) = 1, then
rank(Iγ) = 1 for any γ.

To resolve the ambiguity, we use only one known
exposure ratio. Using the known exposure ratio, we can
estimate γ by solving the least-square problem described
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as
γ̂ = argmin

γ

∑
i,j

[ĝγ(Mi)− ri,j ĝγ(Mj)]
2
, (17)

where ri,j is the exposure ratio ei/ej of measurement
pairs Mi and Mj .

3.4 Representation of response functions

The empirical model of response function (EMoR) [7]
and polynomial representation [2] are the most widely
used representations of response functions. As men-
tioned in various prior works [3], [5], [16], [17], [18], [19],
[23], EMoR can represent various response functions
with few coefficients. However, it is difficult to compute
derivatives for EMoR either analytically or numerically
because EMoR is a highly non-smooth function. There-
fore, EMoR is not suitable for gradient-based convex
optimization. On the other hand, the polynomial repre-
sentation is more appropriate for gradient-based convex
optimization because of its smoothness. Also, recent
research shows that most typical response functions can
be represented well with only a 5th order polynomial
function [35]. For these reasons, we choose to use the
polynomial representation as done in [2].

We normalize the irradiance and observation domains
in the range of [0, 1] by enforcing g(0) = 0 and g(1) = 1.
We explicitly embed this boundary condition in the
parametric representation of g, and the polynomial rep-
resentation becomes

g(M) = M +M(M − 1)

n−1∑
i=1

ciM
n−i−1, (18)

where n is the order of a polynomial function, and ci
are the coefficients to estimate. With this, the degree of
freedom is reduced to only 4 for the 5-order polynomial
representation.

3.5 Iterative optimization

We use the rank minimization and outlier rejection algo-
rithms in an iterative manner to solve the problem. The
overall process is summarized in Algorithm 2. Once the
optimal solution of inverse response function g is ob-
tained, if exponential ambiguity exists in the solution in
the multiple-exposure setting, we resolve the exponential
ambiguity γ after convergence using Eq. (17).

3.6 Prior model

In most cases, we can estimate a right solution from
Eq. (13). However certain methods like color mixture
case [3] have a difficulty to estimate a unique solution
due to insufficient information. For that case, we can
use prior information to regularize the solution. The
prior model is formed by fitting a multivariate Gaussian
mixture model to the DoRF database [7] as done in [3].

Algorithm 2 Radiometric Calibration Process
1: procedure RANKCALIB(D)
2: initialize g
3: while not converged do
4: A = g ◦D
5: Z = OutlierRejection(A, ρ)
6: Calculate error using Eq. (13)
7: Update g
8: end while
9: return ĝ

10: end procedure

Using an Expectation Maximization (EM) algorithm, the
prior model is constructed with K kernels as

p(g) =

K∑
i=1

αiN (g;µi,Σi). (19)

The likelihood of the rank constraint is modeled as

p(D|g) =
1

Z
exp (−λE (g;D)) , (20)

where Z is a normalization constant, λ is a regularization
parameter, and E is a rank error function. The optimal
response function ĝ is obtained by solving the following
MAP problem:

ĝ = argmax
g

p (g;D) = argmax
g

p (D|g) p (g) . (21)

Substituting Eq. (19) and Eq. (20) into the logarithmic
form of Eq. (21), we obtain

ĝ = argmin
g

λE (g;D)− log p(g). (22)

The use of the prior information is demonstrated in Sec.
4.3.

4 EXPERIMENTS

We evaluate the proposed method in three different
settings: multiple-exposure, varying illumination, and
color mixture settings. In particular, we make a thorough
analysis of the proposed method using the multiple-
exposure scenario in Sec. 4.1. Sec. 4.2 and Sec. 4.3
describe the result of varying illumination and color
mixture cases, respectively.

The optimization of Eq. (13) can be performed using
various minimizers. Though Eq. (13) is not convex, it
converges to the correct solution with a broad range of
input data as we will see below. In our experiments, we
use the Levenberg-Marquardt (LM) method. We always
set the weighting factor λ = 1e10 in Eq. (13) and ρ = 3
in Algorithm 1 throughout the experiments.
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Fig. 3. Scene radiance distributions of four synthetic
datasets (D1-D4).

4.1 Multiple-exposure case

To evaluate the proposed method, we perform experi-
ments using both simulation and real-world data. We
compare our results with results of Mitsunaga and
Nayar’s method [2] (MN method, henceforth). In our
implementation, we use a polynomial function to repre-
sent response functions as described in Sec. 3.4 as done
in [2]. Once the response function is estimated up to
the exponential ambiguity, we resolve the ambiguity to
determine the final response function using Eq. (17). This
optimization is also performed using the LM method.

4.1.1 Simulation
In this section, we use a synthetic dataset for quantitative
evaluation. The synthetic dataset is generated using
the DoRF database [36], which contains 201 measured
response functions. We synthetically generate scene radi-
ances in the range of [0, 1] and create 1000 observations
(which forms a 1000-pixel image) using each response
function with five exposure times. The step of exposure
ratios is set to 0.5 because this is a commonly available
setting in commercial cameras. Fig. 3 shows four scene
radiance distributions (D1-D4) of the synthetic dataset
that we have used. We further add five different magni-
tudes of noise for each radiance distribution. Therefore,
the comparison with the MN method is performed using
4020(= 201 × 4 × 5) synthetic data in total. Poisson
noise distributions in Eq. (9) with camera gains Cg(=
{0, 1, 3, 6, 9}) are used for diversifying the datasets.

In presenting the simulation result, we plot cumulative
histograms that show the number of results below a
certain root mean squared error (RMSE) for each con-
figuration. The greater area under the curve shows the
superior performance. On the top of each figure, we
denote the radiance distribution used for the experiment.
“All dataset” indicates that all the radiance distributions
are used.
Initial guess. We first assess the effect of initial guesses
to the solution. As mentioned, our method does not
have a guarantee to converge to the globally optimal
solution, like any other non-linear optimization prob-
lems. For this experiment, we use two settings; one is
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Fig. 4. Effect of numbers of coefficients of the polynomial
representation.

simply starting from a linear initial guess, and the other
uses five different gamma curves as initial guesses of
the inverse response function g and picks the optimal
solution. In the latter setting, the range of γ is set to
0.8−1.6 with a step of 0.2. In the experiment, we observe
that our method as well as the MN method are not
susceptible to the initial guess. The solution using our
rank minimization approach may result in various local
minima due to the exponential ambiguity. However, for
radiometric calibration purposes, it is sufficient to find
such a local minimum for our method because it is one
of the true solutions with the exponential ambiguity
in most cases. We use the linear response function as
an initial guess for the rest of the evaluations for its
simplicity.
Number of coefficients. One of the most important
parameters for both methods is the number of coeffi-
cients in representing inverse response functions. In the
polynomial representation, it is the degree of polynomial
functions. To find the best number of coefficients, we
perform performance evaluation with different numbers
of coefficients, varying from 3rd to 8th-order polynomials.
Fig. 4 shows performance variations w.r.t. the polyno-
mial orders for the MN method and our method. The
MN method always produces a smaller cost value when
higher-order polynomials are used. However, it does
not necessarily mean a better estimation. Instead, it is
due to an over-fitting problem, and it leads to worse
estimates. We observed that for the MN method a 5th

order polynomial works well with various noise levels.
This result agrees with the observation in [35], where
it is said that a 5th order polynomial representation
has a good balance between accuracy and flexibility in
representing response functions.

On the other hand, normally our method shows better
results as the polynomial order increases. In our method,
the smaller cost values coincide well with the precision
of estimates. We decide to use a 6th order polynomial
for our method because we observe that there is no
performance gain from a polynomial order higher than
the 6th order.
Condition numbers and image noise. In Sec. 3, we
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Fig. 5. (Left) Evaluation of cost functions of Eq. (8)
and Eq. (12) using synthetic scenes D1. “κall” indicates
minimization of all the condition numbers using Eq. (8),
while “κ2” corresponds to minimization of 2nd condition
number using Eq. (12). (Right) Performance comparison
of the MN method, Eq. (8) and Eq. (12)

observed the relation between condition numbers and
image noise. Here, we perform experiments for further
validation. For this experiment, we compare the results
of two cost functions, Eq. (8) and Eq. (12). Eq. (8)
minimizes the sum of all condition numbers, while
Eq. (12) minimizes only the 2nd condition number. The
experimental results are shown in Fig. 5. In the left plot,
it shows that minimizing the 2nd condition number is
much more robust than minimizing the sum of all con-
dition numbers, especially when there is greater noise.
The right figure shows the cumulative histogram of the
MN method, Eq. (8) and Eq. (12) for all of datasets. In
this figure, the result of Eq. (8) shows worse result than
the result of the MN method, while Eq. (12) shows the
best result among the others.
Outliers. In practice, recorded data have outliers due
to misalignment of images or small motion in a scene.
To validate our outlier rejection procedure, we perform
experiments by adding outliers in the dataset. The out-
liers are added by randomly changing selected pixel
values in the range of [0, 1] of the original dataset. Fig. 6
shows results. While our method with outlier rejection
procedure is not affected by outliers, performances of
other methods, i.e., straightforward rank minimization
and the MN method, are highly degraded even for only
one percent outliers.
Results with synthetic dataset. Now we assess the
performance of our method in comparison with the
MN method. Fig. 7 shows results with the synthetic
dataset. With very small noise, the MN method works
better than ours. However, the performance of the MN
method rapidly degrades as the noise becomes larger
while our method is still robust against the greater noise
level. As shown in the figure, the estimation accuracy
depends on not only the noise level but also the radiance
distribution. With uniformly distributed scene radiance,
the estimation becomes quite stable for both methods.
However, when the radiance distribution becomes bi-
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Fig. 6. (Left) Effect of outliers on different methods. MN
indicates the MN method, RANK is a straightforward rank
minimization without outlier rejection, and Ours is our
complete method. (Right) Performance comparison of our
method with different amounts of outliers.

ased, which is very common, it introduces performance
degradation particularly for the MN method as shown
in the D4 result. The biased radiance distribution intro-
duces biased observations, thus it yields an over-fitting
problem in the MN method. In contrast, our method
suffers less from such an effect.

We summarize the quantitative results in Table 2. The
DoRF database contains some response functions which
are difficult to represent with 5th order polynomials.
These functions give trivial results for the MN method;
therefore, we only use the best 150 fitting results for each
of the algorithms to compute the mean and standard de-
viation of RMSE and disparity (the maximum deviation
from the ground truth). The table shows that our method
performs well for most datasets. It also shows that our
method is robust against increasing noise levels, while
the performance of the MN method rapidly degrades.

4.1.2 Real-world experiment

We also perform experiments using real-world cameras
and scenes. In our experiments, we use three different
cameras: Canon 550D, Nikon D1X, and Sony DSC-828.
Each dataset is collected by capturing a static scene with
different exposure times. Fig. 8 shows estimation results
with real-world scenes. For presenting the results, we
convert images to irradiances as done in [37] and com-
pare the results both with and without calibration. We
estimate response functions from a set of input images
and linearize the input by applying estimated inverse
response functions. For the estimation of response func-
tions, we first reject observations in the under-exposure
level (e.g., 5 in 0-255 range) and saturation level (e.g., 250
in 0-255 range) to avoid estimation bias. There are white
balancing and color space transformation to convert
camera color space into the linear sRGB. The transforma-
tion that includes both the white balancing and the color
space transformation can be represented by a 3×3 matrix
and can be obtained in the least-square manner. The
error maps are calculated by comparing the estimated
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Fig. 7. Cumulative histogram of the number of successful cases w.r.t. RMSE.

Mean Standard Deviation
Noise level (Cg) 0 1 3 6 9 0 1 3 6 9

D1
RMSE MN 0.0058 0.0054 0.0062 0.0109 0.0160 0.0054 0.0057 0.0056 0.0063 0.0075

Ours 0.0071 0.0070 0.0075 0.0084 0.0102 0.0054 0.0060 0.0067 0.0067 0.0070

Disparity MN 0.0142 0.0139 0.0152 0.0238 0.0354 0.0134 0.0140 0.0139 0.0147 0.0194
Ours 0.0157 0.0164 0.0174 0.0194 0.0225 0.0124 0.0143 0.0153 0.0164 0.0179

D2
RMSE MN 0.0079 0.0077 0.0134 0.0208 0.0287 0.0076 0.0081 0.0107 0.0133 0.0174

Ours 0.0095 0.0100 0.0105 0.0111 0.0132 0.0082 0.0086 0.0083 0.0094 0.0098

Disparity MN 0.0180 0.0184 0.0299 0.0468 0.0634 0.0172 0.0190 0.0239 0.0304 0.0370
Ours 0.0196 0.0214 0.0228 0.0240 0.0285 0.0163 0.0183 0.0186 0.0207 0.0227

D3
RMSE MN 0.0076 0.0074 0.0111 0.0174 0.0234 0.0072 0.0080 0.0092 0.0117 0.0141

Ours 0.0080 0.0086 0.0105 0.0116 0.0128 0.0066 0.0069 0.0068 0.0086 0.0085

Disparity MN 0.0170 0.0176 0.0250 0.0398 0.0521 0.0164 0.0180 0.0207 0.0282 0.0309
Ours 0.0173 0.0184 0.0218 0.0245 0.0272 0.0142 0.0139 0.0137 0.0182 0.0193

D4
RMSE MN 0.0086 0.0118 0.0233 0.0393 0.0565 0.0079 0.0097 0.0152 0.0252 0.0344

Ours 0.0144 0.0131 0.0138 0.0154 0.0189 0.0138 0.0134 0.0124 0.0118 0.0126

Disparity MN 0.0195 0.0262 0.0507 0.0822 0.1155 0.0184 0.0221 0.0331 0.0486 0.0635
Ours 0.0285 0.0275 0.0293 0.0327 0.0393 0.0270 0.0276 0.0273 0.0275 0.0308

TABLE 2
Quantitative results using the synthetic dataset in comparison with Mitsunaga and Nayar’s method (MN) in terms of

the RMSE and disparity over various datasets.

RAW images with the ground truth RAW images. The
error in the estimated RAW images with calibration is
due to a gamut mapping [37] at saturated pixels and
demosaicing/compression around edges. For compari-
son, we also estimate the response function using the
MN method from the same input data. With reasonable
input, both methods present similar estimation results.

To evaluate the performance using diverse response
functions, we additionally perform an experiment with
a Point Grey Flea3 camera. With the camera, we can
choose any gamma function as a response function.
Three different gamma functions (γ = {0.6, 1.0, 2.2}) are
used, and the result is shown in Fig. 9. For various types
of gamma functions, our method performs well while
the MN method fails to estimate the right solution for
γ = 0.6.

Radiometric alignment. To perform radiometric align-
ment without any exposure information, all we need is
a simple constraint to anchor the solution. In our case,
we derive a response function, which satisfies that the
observation 0.5 is mapped to an irradiance 0.5. Note that
the constraint is arbitrary for the radiometric alignment
application as long as a unique radiometric response

function, which may differ from the true response func-
tion by the exponential ambiguity, is determined. Based
on this, we estimate the (pseudo) exposure ratios of input
images and perform the radiometric alignment.

Here we show a radiometric alignment result using
the estimated response function in Fig. 10. Without
calibration, the aligned image with proper intensity nor-
malization using the ratio of (R+G+B) intensity gives an
RMSE of 0.0657. After calibration with our method, the
error is reduced to 0.0225.

4.2 Varying illumination case
We apply our method to the varying illumination case
and compare with the method proposed by Shi et al. [4].
We use two real-world scenes SHEEP and FROG recorded
by a Canon 20D and Nikon D70, respectively. The
ground truth is obtained by the MN method using a
Macbeth Color Chart beforehand.

For each scene, we randomly select samples to pro-
duce color profiles and compute the average of the
results of ten trials. In practice, the accuracy of Shi et
al.’s method has dependency on the selected samples,
therefore we take more trials and remove obvious failure
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Fig. 8. Results of our calibration method. From top to bottom, the results of different cameras are shown: (a) Canon
500D, (b) Nikon D1X, and (c) Sony DSC-F828. For each camera, several images are shown: (I) one of the input
images, (II) the calibrated image by applying estimated inverse response functions, (III) the ground truth RAW image,
(IV) the estimated RAW image from the calibrated sRGB image, (V) error map between the ground truth RAW image
and the estimated RAW image without calibration, (VI) error map between the ground truth RAW image and the
estimated RAW image with calibration. The white pixels on the error maps indicate saturated pixels having a value of
255 in any of the channels. The right column shows estimated inverse response functions.
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Fig. 9. Results of our calibration method with a dataset captured from a Point Grey Flea3 camera.

Fig. 10. Radiometric alignment of real-world images. Top:
input images, Bottom: radiometrically aligned images.

modes. In this experiment, for the purpose of directly
comparing our rank constraint with Shi et al.’s non-
linearity constraint, we do not apply the outlier rejection
process.

Fig. 11 shows the results. In the figure, the median
response curve of ten trials is used for plotting. We
also summarize the quantitative results in Table 3. For
both datasets, our method shows more accurate and
stable results. With a small number of samples, the
result of the original method fluctuates because of the
heuristic non-linearity constraint, but our method ro-
bustly converges well because of the more principled
computation scheme. With more samples, both methods
give more stable and robust estimation. As shown in
the table, our method is about 1000 times faster than
the original method that uses Nelder-Mead simplex
optimization [38]. Since our method has a computational
complexity of O(n), we can use more samples to achieve
far more robust estimation.

4.3 Color mixture case
We also perform radiometric calibration from a single
image, which utilizes the linearity of color mixtures
around texture edges [3]. This method relies on prior
information of response functions because color mixtures
usually only span a limited range of observations, which
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SHEEP (12) FROG (20)

Fig. 11. (Top) example images of SHEEP and FROG
dataset. (Bottom) result of radiometric calibration in the
varying illumination case. SHEEP dataset is recorded by a
Canon 20D (12 images) and FROG data is recorded by a
Nikon D70 (20 images).

is not sufficient to uniquely determine the response
function. Therefore, Lin et al. [3] infer the solution using a
Bayesian approach with prior information of real-world
camera response functions [7]. In [3], the linearity of
color mixtures is measured using the distance from each
mixed color to the line defined by the two colors in the
RGB color space.

We also use prior information to regularize the so-
lution as explained in Sec. 3.6. There is a trade-off in
using the prior information between estimation bias and
robustness. Therefore, a strong prior might introduce
bias in the estimation result. In our implementation, we
use five kernels (K = 5) to construct the prior model
and λ is set empirically to 103. The rank error function
E is defined as

E(g;D) =

m∑
i=1

wiκ2 (Ai) s.t. Ai = g ◦Di, (23)

where m is the number of color mixtures, and wi is a
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Dataset SHEEP (Canon 20D) FROG (Nikon D70)
samples method RMSE (std.) Disparity (std.) Time(s) RMSE (std.) Disparity (std.) Time(s)

50 Shi et al. [4] 0.0488 (0.0227) 0.0846 (0.0429) 433.66 0.0279 (0.0050) 0.0456 (0.0064) 697.05
Ours 0.0226 (0.0006) 0.0447 (0.0061) 0.84 0.0191 (0.0010) 0.0419 (0.0051) 0.80

100 Shi et al. [4] 0.0418 (0.0172) 0.0729 (0.0345) 914.64 0.0293 (0.0038) 0.0441 (0.0056) 1316.88
Ours 0.0218 (0.0003) 0.0430 (0.0021) 1.11 0.0176 (0.0005) 0.0396 (0.0032) 0.86

TABLE 3
Radiometric calibration results in the varying illumination case. SHEEP/FROG dataset captured by Canon 20D and

Nikon D70 are used. The average RMSE of ten trials are shown. The value inside the brackets is the standard
deviation of the ten trials.
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Fig. 12. Radiometric calibration from a single image.
Lin et al .’s result is obtained from their original paper. Data
courtesy of Stephen Lin.

weighting parameter. The parameter wi is defined as the
distance between the two irradiances of a color mixture
in the RGB space because a color mixture that has
longer distance is affected more by response functions.
The coefficients of g is initially set to the mean inverse
response function of the DoRF database [7].

Fig. 12 shows the result for the input image used in [3].
The estimation result is compared with the ground truth
that is obtained by MN method beforehand. While this
case requires prior information, the result shows that
low-rank constraint can be applied well in color mixture
based methods.

5 CONCLUSIONS

In this paper, we have introduced a robust radiometric
calibration algorithm that uses the low-rank structure of
irradiance vectors. The problem is formulated as one
of rank minimization and solved by minimization of
the condition number of the input matrix. We further
developed an algorithm for outlier rejection. These meth-
ods are combined in an iterative manner for achieving
robust estimation. The advantage of our method is that
it capitalizes on the fundamental linear dependency of
sensor irradiances, therefore it can handle the radio-
metric calibration problem in a unified and principled
framework. We show that our framework can be easily
applied to other radiometric calibration problems that
use linearity of irradiance by taking Shi et al.’s [4] and
Lin et al.’s [3] methods as examples. The effectiveness of

the proposed approach is verified using both simulation
and real-world experiments.

5.1 Limitations

In our current implementation, we use a simple op-
timizer for the rank minimization, and it is sufficient
to find the right solution as shown in experiments for
most of the cases. However, sometimes the optimization
fails to converge to the global minimum, or converges
to a trivial solution due to insufficient input data or
great noise. This could be improved by using a better
optimization method for the rank minimization.
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