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Abstract

We present an efficient multi-view 3D reconstruction
method based on randomization and propagation scheme.
Our method progressively refines 3D point estimates by ran-
domly perturbing the initial guess of 3D points and propa-
gates photo-consistent ones to their neighbors. In contrast
to previous refinement methods that perform local optimiza-
tion for a better photo-consistency, our randomization ap-
proach takes lucky matchings for reducing the computa-
tional complexity. Experiments show favorable efficiency
of the proposed method with the accuracy that is close to
the state-of-the-art methods.

1. Introduction
Multi-view stereo (MVS) reconstructs dense 3D points

from a set of calibrated images by estimating correspon-
dences across the images. Much progress has been made
on improving the quality of 3D reconstruction, and it is get-
ting close to that of laser scans in recent approaches [5, 11].
However, the computational complexity becomes one of
the major limiting factors for MVS methods when a large
amount of data needs to be processed. Improving the com-
putational efficiency of MVS is actively investigated by sev-
eral recent works [7, 15, 27, 33].

The major reason why a conventional MVS demands
a high computational cost is that, for each hypothesized
3D point, its photo-consistency needs to be evaluated us-
ing multiple views that see the 3D point. The number of the
operations is proportional to the amount of hypothesized 3D
points and the number of views. Thus, reducing the num-
ber of photo-consistency assessment is one of the keys to
greater efficiency.

In this paper, we present an efficient MVS method based
on a random-search and propagation scheme. The random-
search and propagation approach is shown useful in the
recent PatchMatch method [2], also in its application to
binocular-stereo [4]. The heart of PatchMatch method is the
observation that random sampling can sometimes find good

matches, and that propagating the sparse good matches can
efficiently overwrite nearby bad matches thanks to the lo-
cal coherence of an image. The use of this scheme in
the MVS context has a few advantages. First, it can sig-
nificantly reduce the number of photo-consistency evalua-
tions by the random-search, unlike point-wise local opti-
mization approaches. Second, local smoothness is implic-
itly enforced by the propagation in an efficient manner. As
a result, the computational demands can be significantly re-
duced by our method in comparison with recent efficient
MVS approaches (e.g., 3× faster than [11]). Finally, our
approach is robust against errors in the initial guess; in fact,
our method is able to begin with any random guess of the
3D points.

While the random-search and propagation scheme has
these advantages, it is not straightforward to apply it in the
MVS context where a 3D point is reconstructed via multi-
view photo-consistency. Shen [27] utilizes such a scheme
to speed up depth-map estimation on each pair of images
and merges the resulting point cloud by checking occlusions
with neglecting the multi-view photo-consistency, which is
found often important in previous studies [8, 33]. Unlike
binocular stereo matching where the PatchMatch scheme
has been successfully applied [3, 4, 14], our case requires
to handle significant view-point variations in both angle and
distance and resolution gaps caused by them, and inter-
view propagation needs to be carefully designed for effi-
cient and effective 3D reconstruction. This paper presents
an approach to address these issues and develops an efficient
MVS method. The proposed method is evaluated using
Middlebury multiview stereo benchmark and a few different
outdoor multi-view images. Our experiment shows the ef-
fectiveness of the proposed method in comparison with pre-
vious state-of-the-art methods in efficiency and accuracy.

2. Related work
MVS has been extensively studied in the literature and

compared using comprehensive benchmark datasets [25,
30]. This section reviews some of the works that are closely
related to our work.
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Efficiency of MVS has been pursued in a few different
approaches. One class of methods casts the MVS prob-
lem into a combination of local (typically, pairwise) stereo
matching and merging processes. The merging process, of-
ten referred to as depth-map merging, has been approached
using various different ways. Li et al. [18] efficiently merge
depth-maps in a bundle optimization scheme by ensuring
depth consistency across multiple views. Bradley et al. [5]
merge depth-maps into a point cloud by estimating local
surface normal and performing fast meshing in a low di-
mensional space. Merrell et al. [19] present a method for
real-time visibility-based fusion of depth-maps by reducing
number of depth hypothesis.

Another class of approaches performs clustering of in-
put images such that highly redundant computations can be
avoided [10] or independent parts can be handled in paral-
lel [9, 13, 35]. Furukawa et al. [10] perform clustering using
three cues; compactness, size, and coverage. By introduc-
ing a function that measures the expected reconstruction ac-
curacy, they minimize the total number of images from the
clusters subject to the function with pre-defined maximum
number of images per cluster. Consequently, they reduced
computational cost by half for St. Peter’s Basilica dataset1.
3D reconstruction using a massive amount of community
photo collections has been shown by Goesele et al. [13].
Their method selects a small set of views among candidate
views for matching in order to speed up the depth com-
putation, by a criterion designed to prefer views that are
photometrically consistent and provide a sufficiently wide
range of observation. Frahm et al. [9] propose appearance-
based clustering by extracting global appearance descriptor
gist [21] for each image and verifying the clusters via epipo-
lar geometric consistency. They improve performance by
leveraging the constraints from appearance clustering and
location independence, and by performing computation in a
parallel manner at the cluster level.

Parallelism is indeed an important aspect for an efficient
MVS method. Some of the computation blocks, such as im-
age re-projection and visibility checking, are naturally par-
allelized as shown in [15, 22]. Li et al. [18] use a track,
which refers to a set of pixel matches, for performing op-
timization at the track-level in parallel. Agarwal et al. [1]
show city-level reconstructions in a day by designing paral-
lel image matching pipeline. Furukawa et al. [10] propose
a merging algorithm that is designed to run on individual
MVS points in a parallel manner.

Recent progress in GPU parallelization has made real-
time 3D reconstruction possible. Newcombe and Davi-
son [20] present a rapid and dense reconstruction method
of scenes browsed by a live camera using a base mesh and
its warped depth maps. Stühmer et al. [31] show the recon-
struction of a scene with small displacements from nearly-

1http://grail.cs.washington.edu/rome/rome/index 5.html
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Figure 1: Flow chart of the proposed method. Latter three
components are iterated. See Sec. 3 for more details.

static handheld camera. Furthermore, a live 3D reconstruc-
tion on mobile phones has been introduced by Tanskanen et
al. [32], where the embedded inertial sensor is used for
determining camera poses. However, these methods are
limited to low-resolution or short-baseline settings, which
make them efficient and tractable but inapplicable to more
general cases.

In contrast to these approaches, we aim at reducing
the computational cost by neglecting costly yet small-
gain computations using the random-search and propaga-
tion scheme, motivated by the recent success of PatchMatch
technique [2] and its applications. Bleyer et al. [4] apply
the PatchMatch method to binocular stereo matching with
slanted support windows and have shown accurate estima-
tion results. It is further improved by combination with
a belief propagation-based solution method by Besse et
al. [3]. Furthermore, Heise et al. [14] impose regulariza-
tion with the Huber norm to achieve the state-of-the-art ac-
curacy in Middlebury stereo benchmark [24] for 0.5-pixel
accuracy.

3. Proposed method
Our method is built upon random-search and propaga-

tion scheme and consists of four steps: (1) initialization, (2)
random-search, (3) propagation, and (4) filtering as illus-
trated in Figure 1. We use a small 3D patch that is defined
for a 3D point. The patch is a rectangular plane that is de-
fined by its center position (corresponding to the 3D point),
normal direction, and the number of grid points and size. In
the initialization step, patches are first assigned random po-
sitions and normals. From those randomized patches, a set
of best patch candidates is then selected by evaluating each
patch’s photo-consistency across all the views, and the rest
of the patches are removed. In the random-search step, the
original patches are perturbed and assigned new positions
and normals. Patches are then propagated to their neigh-
bors in the 3D coordinates, regulated by the input image
coordinates. Finally, the filtering step eliminates outliers.
The steps from the random-search to the filtering are iter-
ated until convergence. In what follows, we describe our
3D patch model and explain the details of each step.

3.1. Patch model and photo-consistency

Our patch is a local 3D plane defined in the world co-
ordinates system. It is represented as p(c,n) ∈ P , where
c ∈ R3 is the 3D position of the patch center, n ∈ R3 is the



normal direction. µ×µ grid points are defined on the patch
plane, and the interval between each grid point is adaptively
determined using the rays spanned at the pixel interval from
the closest image. The grid points are projected onto the
image coordinates, and corresponding pixel intensities are
sampled to create an observation vector for each view.

Photo-consistency score of patch p is calculated as fol-
lows. We collect a set of visible images V(p) for patch p
by evaluating visibility using camera’s field of view and the
angle between patch’s surface normal and the ray direction
from the camera. From V(p), we select the closest view as
the reference image R(p) by evaluating the projected areas
of the patch with a unit area. Once the reference imageR(p)
is determined, the 3D patch grid is created as described
above, and an observation vector f ∈ Rµ2

is generated for
each image in V(p). Using the observation vectors, we de-
fine the photo-consistency cost E(p) as the average of one
minus normalized cross-correlation (NCC) scores between
the reference and other observation vectors, fr and fi, and

E(p) =
1

|V(p) \ R(p)|
∑

i∈V(p)\R(p)

1−

〈
f̂r

‖f̂r‖
,

f̂i

‖f̂i‖

〉
, (1)

where 〈·, ·〉 represents the inner product of vectors, f̂ = f−f
and f represents average of the observations in the vector.
In this manner, the greater photo-consistency results in the
lower cost E(p). To increase the robustness against oc-
cluded views, we remove the NCC scores from the above
calculation that are smaller than the pre-defined thresh-
old α. In addition, to avoid the aperture problem, we set
E(p) =∞ when fr is textureless, i.e., the magnitude of the
reference vector f̂r is close to zero.

In our method, we use a view-dependent candidate patch
map Bi ∈ PW×H , which has the same dimensions (W,H)
as the image of camera i. It retains the visible patch that
has the highest photo-consistency, i.e., smallest E(p), for
each ray from each camera i. The view-dependent candi-
date patch map B is used for achieving computational effi-
ciency, by working in a set of image coordinates, rather than
directly in the world 3D coordinates. A similar concept has
been used in PMVS [11], which stores all the patches that
the ray penetrates, but our candidate patch map B stores
only the best one for each ray (or none for the ray that does
not intersect any patch). Our method updates the candi-
date patch maps B whenever patches p are updated. We use
a vector x = (x, y) ∈ Z2

+ for indicating the coordinates
of the candidate patch map Bi, and use Bi(x) for indicat-
ing the corresponding patch p that is stored in the candidate
patch map Bi at location x.

3.2. Initialization

In the initialization step, a set of 3D points are randomly
generated, and for each 3D point, a 3D patch p is assigned.

Algorithm 1 random-search

Input: Original patch p(t), camera i, ray r through target
pixel, range parameters rc, φ, θ, ψ, threshold ε

Output: New patch p(t+1)

1: while (rc > ε) do
2: Pick random ∆d ∈ [−rc, rc]
3: Pick random(∆φ,∆θ,∆ψ)T∈

[
−(φ, θ, ψ)T , (φ, θ, ψ)T

]
4: R := Rx(∆φ)Ry(∆θ)Rz(∆ψ)
5: cp′ := cp + ∆dr
6: np′ := Rnp
7: if E(p′) < E(p(t)) using Eq. (1) then
8: p(t+1) := p′

9: end if
10: (rc, φ, θ, ψ) := (rc, φ, θ, ψ)/2
11: end while

Algorithm 2 spatial propagation

Input: Candidate patch maps {B(t)
i }, cameras {i}, propa-

gation direction w ∈ {−1, 1}
Output: Updated candidate patch maps {B(t+1)

i }
1: for each image Ii do
2: ci := position of camera i
3: for each pixel location x(= (x, y)) do
4: X′ := {(x+ w, y), (x, y + w)}
5: for each x′ ∈ X′ do
6: b′ := B(t)

i (x′)
7: r′ = (b′ − ci)/||b′ − ci||
8: d := (cb′ − ci)

Tnb′/(r
′Tnb′)

9: cp′ := ci + dr′

10: np′ := nb′

11: if E(p′) < E(B
(t)
i (x′)) then

12: B
(t+1)
i (x′) := p′

13: end if
14: end for
15: end for
16: end for

The patches p are further assigned random orientations n.
In case no prior information is given about the scene, our
method begins with randomly producing 3D points in a
bounding box or intersection of multiview frustum. If some
knowledge about the scene is available, e.g., sparse cor-
respondences obtained in the structure-from-motion pro-
cess [29, 34], our method takes them as input and generates
additional random 3D points around the original ones.

3.3. Random-search

Our method uses a random-search approach for generat-
ing more diverse patches around the previous candidates as
shown in Figure 2a. Unlike previous approaches that com-
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Figure 2: Illustration of essential steps. (a) An existing patch is replaced with a better one that is randomly produced by
perturbation. (b) From an existing patch, new patches are generated from left to right on its extended plane. (c) The newly
propagated patches are further propagated to another view j to update Bj .

putes local optima using gradient descent, our method at-
tempts to efficiently find a sub-optimal solution in a ran-
domization scheme. In addition, because of the randomiza-
tion, the method has a chance of escaping from local min-
ima, which is potentially non-optimal.

We use the candidate patch maps B for generating new
patches. For each view i, we pick a patch p stored in
B

(t)
i (x), where (t) indicates the result of the t-th itera-

tion. A new patch p′ is created by perturbing p’s position
and normal. The perturbation of the position is performed
along the ray of pixel x in camera i, whose displacement
∆d ∈ R is randomly chosen within the perturbation range
[−rc, rc]. With this displacement, the new patch’s posi-
tion cp′ becomes cp′ = cp + ∆dr. The surface normal
is perturbed using a rotation matrix R ∈ SO(3) that is ran-
domly defined by a predefined range of the Euler angles[
−(φ, θ, ψ)T , (φ, θ, ψ)T

]
. The new patch’s surface normal

np′ is thus defined as np′ = Rnp. The photo-consistency
of the new patch p′ is then evaluated, and if it is better than
that of the original patch p, Bi is updated and stores p′. The
procedure is summarized in Algorithm 1.

3.4. Propagation

This step propagates patches to its neighbors using the
candidate patch maps B. This operation is similar to the
original PatchMatch method [2]; however, to apply the pro-
cedure in the context of MVS, we take a two-step approach
for the propagation. Namely, the patches are first propa-
gated to their neighbors in each candidate patch map Bi,
and further propagated across different views i.

The spatial propagation is performed on each candidate
patch mapBi, starting from the top-left to bottom-right cor-
ner in odd iterations, and then the backward direction in
even iterations, as done in [2]. As shown in Figure 2b, a
source patch p of B(t)

i (x) is propagated to its neighboring

target coordinates x′, and a new patch p′ is defined. The
new patch’s location cp′ is determined by the intersection
of patch p and the camera ray through the target coordi-
nates x′. The surface normal of the new patch p′ is main-
tained the same as the source patch p. Subsequently, photo-
consistency of the new patch E(p′) is compared to that of
the patch that has been defined at the same coordinates, i.e.,
E(B

(t)
i (x′)). Then, the candidate patch map Bi is updated

to contain p′ at B(t+1)
i (x′) and the patch p is removed if

E(p′) shows the better photo-consistency (lower score of
E). To avoid unreliable propagations, the propagation is
terminated if the angle between the patch normal np and
the ray direction r is greater than a pre-defined threshold
θp. The procedure is summarized in Algorithm 2.

Before & after filtering

Figure 3: Effect of filtering. Left: observation, middle: be-
fore filtering, right: after filtering. More details become
visible after the filtering.

Once the spatial propagation is performed for each Bi,
inter-view propagation takes place to further propagate
patches to Bj as shown in Figure 2c. Every new patch p′

retained in Bt+1
i is projected onto all the other cameras j to

locate their target coordinates u. If the new patch p′ has a
better photo-consistency than the patch of Bj(u), the patch



is replaced with the new one atBj(u) where u is projection
of the patch p′. At the same time, the patch that is overwrit-
ten at Bj(u) is removed from all the other candidate patch
maps.

3.5. Filtering

To remove the artifacts caused by wrong propaga-
tions, we use two filtering methods after the propagation
step. The first filtering is the one used in Furukawa and
Ponce’s method [11] for discarding visibility-inconsistent
patches and neighbor-inconsistent patches. In addition,
we use smoothness-based trimming as the second filtering.
Smoothness ζp of a patch p is defined by the angle between
its normal np and the average normal n̄p in the fixed-size
windowWp as ζp = arccos(nTp n̄p). We also simply discard
patches that show greater angles than a pre-defined thresh-
old θζ . More details become visible after these two filtering
steps as in Figure 3.

4. Experimental Results
In this section, we assess the performance of our method

using public datasets provided by Seitz et al. [26] and
Strecha [30], and our own street side dataset. The accuracy
of our method is evaluated using the Middlebury multi-view
stereo evaluation score and its relative error to the ground
truth. The measurement of computational cost for Middle-
bury dataset is performed using the normalized time in a
certain fixed environment provided by Middlebury evalu-
ation system. Except for Middlebury dataset, our experi-
ments including comparison with PMVS are performed on
an Intel Xeon CPU E5-2690 2.90GHz (32 cores) with PPL2

for parallelization, where we set the number of iterations of
random-search, propagation, and filtering to 4.

Throughout the experiments, we use the following pa-
rameters. The resolution of the grid µ (in Sec. 3.1) is fixed
to 7, the threshold α for the energy E(p) of Eq. (1) is set
to 0.7. The maximum angle θp (in Sec. 3.4) between np
and the ray r from the camera is set to 60 degrees. The
smoothness threshold for filtering θζ in Sec. 3.5 is set to
arccos 0.85. Perturbation ranges of surface normal are set
to φ = θ = ψ := π. Because the size of the target objects
varies (inferred by camera parameters), we change the pa-
rameters of the perturbation range rc of position and thresh-
old ε depending on the dataset: (rc, ε) = (0.01, 0.001) for
the Middlebury dataset, (0.1, 0.03) for Fountain-P11, and
(0.1, 0.03) for Herzjesu.

Quantitative evaluation procedures for MVS methods are
provided in the Middlebury benchmark [25, 26]. First,
we show the benchmark for accuracy and completeness in
Table 1 in comparison with other state-of-the-art methods

2Parallel Patterns Library(PPL), http://msdn.microsoft.com/en-
us/library/dd492418.aspx

Dataset nIter 1 2 3 4
templeSR GenPatch 0:11 0:21 0:33 0:45
16 images nPatch 55K 106K 194K 232K

PSR 0:59 1:11 1:20 1:21
nTriangle 0.8M 0.9M 1.6M 1.7M

templeR GenPatch 1:39 3:07 4:37 6:10
47 images nPatch 119K 251K 476K 549K

PSR 1:11 1:44 2:22 2:12
nTriangle 1.3M 2.0M 3.7M 4.0M

dinoSR GenPatch 0:15 0:32 0:49 1:07
16 images nPatch 99K 190K 337K 387K

PSR 1:19 1:22 1:59 1:57
nTriangle 1.1M 1.5M 2.6M 2.8M

dinoR GenPatch 2:33 5:01 7:25 9:57
48 images nPatch 176K 380K 734K 837K

PSR 1:22 1:57 3:00 3:39
nTriangle 1.8M 2.9M 5.2M 5.6M

Table 2: Running time (min:sec) with respect to the
varying number of patches and triangles over itera-
tions. (GenPatch:generating patches, nP:number of patches,
PSR:Poisson surface reconstruction, nT:number of trian-
gles)

dinoRing 

templeRing 

Initial guess Iteration 1 Iteration 2 Iteration 3 Iteration 4 

Figure 4: Our reconstruction results over iterations on the
Middlebury dataset. From totally random initial guess
in a bounding box, our method iteratively refine the 3D
shape. Meshes are generated with Poisson surface recon-
struction [16]. Top: TempleRing data, bottom: DinoRing
data.

along with the normalized computation time. It shows the
efficiency of the proposed method without a significant loss
of accuracy and completeness. Table 2 shows component-
wise running time with respect to the varying number of
patches and triangles over iterations. Figure 4 shows the
evolution of our 3D reconstruction over iterations. Our
method faithfully recovers 3D shape in several iterations,
even with starting from the totally random initial guess. For
the TempleRing and DinoRing datasets of Middlebury [25],
our method runs in a couple of minutes for patch optimiza-
tion followed by a couple of minutes of Poisson surface re-



Temple Dino
Ring SparseRing Ring SparseRing

Method Processor Acc Comp Time Acc Comp Time Acc Comp Time Acc Comp Time
Ours CPU 0.51 96.4 7.4 1.23 90.2 1.9 0.32 97.3 12.1 0.42 96.7 2.7
Furukawa3 [11] CPU 0.47 99.6 211 0.63 99.3 129 0.28 99.8 301 0.37 99.2 152
Hiep [15] GPU 0.45 99.8 1.5 - - - 0.53 99.7 1.5 - - -
Bradley [5] CPU 0.57 98.1 11.4 0.48 93.7 3.5 0.39 97.6 23.5 0.38 94.7 7
Campbell [6] CPU 0.48 99.4 59 0.53 98.6 22.5 - - - - - -
Goesele [12] CPU 0.61 86.2 2040 0.87 56.6 687 0.46 57.8 2516 0.56 26.0 843
Li [18] CPU 0.64 98.2 3.6 - - - 0.43 99.7 5.9 - -
Kolev3 [17] CPU 0.7 98.3 539 0.97 92.7 114 0.42 99.5 470 0.48 98.6 100

Table 1: Quantitative evaluations using the Middlebury dataset [25] with default thresholds(Acc:90%, Comp:1.25mm). Each
column for each dataset shows accuracy in mm, (Acc: the lower the better), completeness in % (Comp: the higher the better),
and normalized running time in minutes (Time).
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(b) Herzjesu-P8

Figure 5: Quantitative evaluation of our method compared
to PMVS [11] on two data sets of [30]. The last(15th) bin
collects the pixels with error ratio greater than 1.5%.

construction [16] that generates millions of triangles. Our
CPU implementation is slower than the GPU implementa-
tion of Hiep et al. [15] with a GeForce 8800 GTX that has
128 stream processors. While we cannot directly compare
the performance with their method due to the difference of
CPU and GPU implementations, our method shows perfor-
mance improvement over other CPU implementations.

We also use Strecha’s MVS dataset [30], Fountain-P11

and Herzjesu-P8, for evaluating the performance of our
method. Figure 5 shows the cumulative histogram of er-
ror ratio in depth to the ground truth, i.e., e = (dr−dg)/dg ,
where dr is the depth estimate and dg is the ground truth.
It shows our result has similar accuracy with PMVS. The
qualitative results are also shown in Figure 6. They show
good overall reconstruction of the scenes that is close to
PMVS [11], while the level of reconstruction details is
varying due to the fact that our propagation assumes local
smoothness as shown in the close-up views.

We also use a more life-like street side scene dataset
that we recorded for evaluating our method. The dataset
is recorded in a rather uncontrolled setting, and a structure-
from-motion technique [28] has been used for recovering
camera poses. In Figure 7, we show the subset of input
images and the reconstruction result in comparison with
PMVS [11], performed via VisualSFM [34]. The exper-
iments are performed with the consistent parameters for
the both methods, e.g., minimum number of supporting
images= 2, threshold for one minus NCC score= 0.7.
Computation time on this dataset is 26 and 83 minutes for
our method and PMVS, respectively. Our result shows
comparable overall reconstruction quality to PMVS’s re-
sult. While the details are better recovered by PMVS, our
method recovers larger areas (e.g., left most building) with
denser points from the same set of input images and param-
eters. The larger coverage area of our method comes from
the difference in the initialization step. While PMVS lim-
its the points to be generated from feature matching across
images, our method initializes the points by random search
over the candidate area.

5. Discussions

By taking the random-search and propagation approach,
we have developed an efficient MVS method. The result
shows that the proposed method achieves high efficiency
with accuracy that is close to the state-of-the-art methods.
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Figure 6: Result of our method on two data sets of [30];
Fountain-P11 (11 images) and Herzjesu-P8 (8 images). A
subset of the input images are shown on the top left cor-
ner, reconstruction results are shown on the top right corner,
their close-up views (a – e), and PMVS [11] results of cor-
responding regions (a’ – e’) are shown, respectively, at the
bottom.

In situations where a large amount of data needs to be pro-
cessed, we believe that our method has a particular strength.
Our method is indeed highly pararllelizable: The random-
search step can be implemented in a parallel manner for
each 3D point, the spatial propagation step can use the jump
flood scheme [23], and view-propagation step can also run
in a parallel manner for each image. This motivates us for
our future work of GPU implementation of additional par-
allelizable parts including NCC computation and image re-
projection.

One of the drawbacks of our method is that its run-
ning time depends on the number of candidate patch maps
(equivalent to the number of input images). This issue could
be addressed by incorporating image selection techniques
such as [9, 10]. Another limitation is that our propagation
step relies on local smoothness of the scene, therefore, small

Figure 7: Street scene reconstruction result from 30 images
in resolution of 6M. The first row shows some of the input
images. The second row shows the point cloud recovered by
our method, and the bottom one shows PMVS [11] result.

objects or high-frequency details in a small region are dif-
ficult to be reconstructed in case their corresponding image
areas are small. Our future work includes further improv-
ing the accuracy of these regions by adaptively increasing
the number of random-search operations.
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