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Abstract
Hyperspectral imaging is a promising tool for applica-

tions in geosensing, cultural heritage and beyond. However,
compared to current RGB cameras, existing hyperspectral
cameras are severely limited in spatial resolution. In this
paper, we introduce a simple new technique for reconstruct-
ing a very high-resolution hyperspectral image from two
readily obtained measurements: A lower-resolution hyper-
spectral image and a high-resolution RGB image. Our ap-
proach is divided into two stages: We first apply an unmix-
ing algorithm to the hyperspectral input, to estimate a basis
representing reflectance spectra. We then use this repre-
sentation in conjunction with the RGB input to produce the
desired result. Our approach to unmixing is motivated by
the spatial sparsity of the hyperspectral input, and casts the
unmixing problem as the search for a factorization of the in-
put into a basis and a set of maximally sparse coefficients.
Experiments show that this simple approach performs rea-
sonably well on both simulations and real data examples.

1. Introduction
The spectrum of scene radiance is characterized by a

distribution of intensity at each wavelength. Conventional
RGB cameras perform a very gross quantization of this
distribution, integrating the product of the intensity with
three basis functions that are significantly spread over wave-
length. Inevitably, information about the scene radiance,
and hence about the physical constituents of the scene, is
lost in this process.

The goal of hyperspectral imaging is to acquire much
more faithful representations of the scene radiance. The
typical output of a hyperspectral imaging system is a set
of intensity values that represent the integrals of the radi-
ance against many basis functions, each of which is well-
localized in wavelength. The availability of such a detailed,
physical representation of the scene is critical for some ap-
plications. For example, in medical image analysis, full in-
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formation about the scene radiance can be used to detect
anomalies that are not distinguishable from RGB images
alone. Also, faithful color reproduction is critical for mu-
seums to record their artwork. Moreover, the use of hy-
perspectral imagery has been shown to enhance the perfor-
mance of a number of computer vision tasks, including seg-
mentation, tracking, and recognition [18].

Unfortunately, this utility comes at a price: the spa-
tial resolution of current hyperspectral imaging systems is
severely limited compared to that of RGB cameras. Record-
ing images with a number of spectral bands requires not
only a larger number of exposures but also longer exposure
times to ensure good signal-to-noise ratio in low-light con-
ditions. It is therefore very interesting to investigate new
imaging mechanisms which can acquire detailed radiance
information without sacrificing spatial resolution.

Contributions: In this paper, we develop a practical high-
resolution hyperspectral imaging system based on a high-
resolution RGB camera and low-resolution hyperspectral
camera. We introduce a two-step process for combining
these two measurements to estimate a high-resolution hy-
perspectral image. First, using a principled solution to the
spectral unmixing problem [13], we obtain an optimal set
of basis functions for representing the reflectances of the
various materials in the scene. Motivated by the simple ob-
servation that there are likely to only be a few materials
contributing to each pixel in the hyperspectral image, we
cast the unmixing problem as one of sparse matrix factoriza-
tion, and solve it via `1-minimization. We use the basis ob-
tained from this method, together with the high-resolution
RGB observation to reconstruct the spectrum at each loca-
tion. The proposed method can efficiently obtain very accu-
rate spectrum estimates with a significant resolution gap be-
tween the high-resolution RGB camera and low-resolution
hyperspectral camera.

2. Related work
The spectrum can be densely measured using diffraction

gratings, prisms, color filters or changing illumination. Du



et al. used a prism and a mask to capture spectral images
at video rate [8]. Color filters with a black/white camera
are also widely used. The liquid crystal tunable filter [9]
is popular since it has narrow passband that can be elec-
tronically adjusted. Schechner et al. [28] used a linear vari-
able filter that has varying passband in one filter dimension.
A custom-made linear CCD with changing color filters are
used in [24]. A spectral video camera using two sets of
CCD with different spectral filters are proposed in [32].

Illumination based methods modulate the light sources
so that they emit lights of a specific wavelength. Zuzak et
al. [34] used broadband light diffracted with digital mi-
cromirror device (DMD) to select which wavelength to be
on or off. Park et al. [20] used five types of LEDs and an
RGB camera to capture multi-spectral video.

It is not trivial to increase the spatial resolution of those
cameras, and some of them are limited in the spectral reso-
lution. Higher resolution in sensor itself would not solve the
problem at once, since it can further cut down the number of
photons reaching to the sensors, though the high-resolution
in the spectral bandwidth already reduces them.

Motivated by the difficulty of building higher resolution
hyperspectral sensors, researchers in remote sensing and
color research have proposed a number of methods to fuse a
high-resolution panchromatic image with a low-resolution
hyperspectral image [6, 12, 2]. One popular technique first
applies a linear transformation of color coordinates (e.g.
HSI) to separate chromaticity and luminance into differ-
ent channels. Since our human eyes are more sensitive to
the luminance, this technique replace the luminance by the
one from the high-resolution panchromatic image and then
reverse the linear transformation to reconstruct the high-
resolution multi-spectral images. These methods, however,
tend to either distort the spectrum or blur the result since the
values in chromaticity channels are not upsampled.

Another class of methods use image filtering techniques
to interpolate the spectra in higher resolution [14]. Since
these methods assume the interpolated values are spatially
smooth, they often over-smooth the image details in the re-
constructed hyper-/multi-spectral images. In contrast, our
method respects the relationship between the RGB and
hyperspectral channels, ensuring that the recovered high-
resolution hyperspectral image produces the same high-
resolution RGB image as the input. It also ensures that
the more detailed spectral properties of the recovered im-
age agree with those of the hyperspectral input.

Our approach accomplishes this by drawing on tools de-
veloped in the sparse representation community [4]. Con-
ceptually, these tools are a good fit for our problem, since
their goal sense signals and images using small (seemingly
insufficient) sets of linear measurements. This seemingly
impossible task is made possible by introducing strong prior
information, in the form of the assumption that the signal is
sparse in a given basis [25]. Naturally, to apply these tech-

niques, we need to know that the signal is indeed sparse
or compressible in a known basis, such as a wavelet basis.
As we will see, in our problem, due to the special struc-
ture of the measurements, we may assume a much stronger
form of sparsity: each hyperspectral pixel images only a few
materials. However, this strong prior information comes
with a price: unlike most applications of compressed sens-
ing, here, the basis of sparsity, which corresponds to the re-
flectances of the materials in the scene is not known ahead
of time, and must be estimated from the observation itself
(similar to [15]).

Recently, a number of groups have applied similar tech-
niques from sparse signal representation to hyperspectral
data problems such as supervised classification [5] and hy-
perspectral unmixing [35, 17]. Our approach also makes
use of hyperspectral unmixing as a key step, and uses an
algorithm motivated by the sparsity of the signal in the spa-
tial dimension. Our approach to unmixing has technical
differences from the aforementioned works. For example,
whereas [17] assumes sparsity in both the spectral and spa-
tial domains, we only work with an assumption of spatial
sparsity that follows naturally from the physical setting of
the problem. However, the most important difference be-
tween the aforementioned works and our approach is that
we utilized an inhomogeneous set of measurements: hyper-
spectral and RGB, and these different measurements have
very different spatial sampling rates.

In the context of this paper, the most relevant related
work is [23], which investigates the utility of wavelet spar-
sity priors for hyperspectral acquisition. Similar to our set-
ting, this paper also augments the compressive hyperspec-
tral measurements with an RGB image. However, as we will
see, this work differs from ours in several respects: first, it
requires a special hardware setup to obtain compressive hy-
perspectral measurements. Second, obtaining compressive
measurements that multiplex over space may obscure a very
natural spatial sparsity that arises due to the presence of a
limited number of materials in the scene. We anticipate that
for scenes in which the materials vary slowly relative to the
sampling rate of the hyperspectral image, our method will
be able to obtain a more accurate reconstruction by directly
exploiting this sparsity.

3. Problem formulation
The goal of this work is to acquire a high-resolution

spectral signal Z ∈ RW×H×S , where W , H and S are the
image width, the image height, and the number of sampled
wavelengths respectively. Our system takes as input two
types of measurements: An RGB image with a high spa-
tial resolution Yrgb ∈ RW×H×3, and a lower-resolution
hyperspectral image Yhs ∈ Rw×h×S , where w � W and
h � H . Both of these inputs are linear functions of the
target signal:

Yhs = Phs[Z], Yrgb = Prgb[Z], (1)



where Phs : RW×H×S → Rw×h×S and Prgb :
RW×H×S → RW×H×3 are linear mappings.1

Since in general the total number of observations ob-
tained from the high-resolution RGB and low-resolution
hyperspectral images is smaller than unknowns whS +
3WH �WHS, the problem is highly under-constrained -
reconstructing Z is impossible without further assumptions.

The first is that the number M of distinct materials in the
scene is relatively small. Let rj ∈ RS denote the reflectance
function of the j-th material. If the illumination is uniform,
then the radiance aj of the j-th material will be the same
at all points containing that material. Hence, at any point
(i, j) in space, the spectrum Z(i, j, ∗) ∈ RS satisfies

Z(i, j, ∗) ≈
M∑

m=1

amhm(i, j) .= Ah(i, j), (2)

where am ∈ RS is the m-th radiance corresponds
to the reflectance of the m-th material, and h(i, j) =
[h1(i, j), . . . , hM (i, j)] are the coefficients.

Now, each observation Yhs(i, j) can be written as

Yhs(i, j, ∗) ∝
∑

k,l∈Wij

Z(l, k, ∗)

= A
∑

k,l∈Wij

h(k, l) .= Aq(i, j), (3)

where Wij is an appropriate window of the high-resolution
image, and q(i, j) ∈ RM are the summed coefficients. Sec-
ond, this method assumes that at each pixel (i, j) of the
low-resolution Yhs, only a few of the materials are present.
Hence, the vector q(i, j) is a sparse vector - only a few of its
entries are nonzero. This assumption is valid whenever the
materials in the scene are not changing too quickly relative
to the spatial sampling frequency of Yhs.

4. Solution via `1-minimization
If we concatenate the equations (3) for all pixels (i, j),

this yields a matrix equation

Ỹhs = AQ, (4)

where Ỹhs
.= [Yhs(1, 1, ∗), . . . ,Yhs(w, h, ∗)] ∈ RS×wh,

and Q .= [q(1, 1), . . . ,q(w, h)] ∈ RM×wh. Eq. (4) ex-
presses the hyperspectral observations as a product of two
physically meaningful terms: The basis A of reflectance
functions, and the sparse coefficients Q which represent the
fractions of each material present at each location. These
two matrices are initially unknown. However, for scenes
that obey our above assumptions, we do know that the ma-
trix Q should be sparse; ideally, as sparse as possible.

1Concretely, an RGB camera multiplies sensitivity functions fc(λ)
to the incoming radiane z(λ) and integrates over the spectral range Ω:R
Ω fc(λ)z(λ)dλ, where c = {r, g, b}. In the matrix form, Yrgb = FZ,

where F is a 3× S sensitivity matrix and Z is a S ×WH matrix.

This is fortuitous: Although there are many possible de-
compositions of Ỹhs as a product AQ, under fairly mild
circumstances the sparsest such decomposition is unique.2

Physically, such a decomposition attempts to explain each
observation in Yhs using the fewest number of materials
possible. We seek such a decomposition by locally mini-
mizing the `1 norm (sum of magnitudes) of the coefficients
subject to a data constraint and a constraint on the `2 norm
of the columns of A:

min
A,Q
‖Q‖1 s.t. Ỹhs = AQ, ‖Aei‖2 = 1 ∀ i. (5)

This approach has been suggested and analyzed, e.g., in
[11].3 We solve Eq. (5) via a non-smooth Gauss-Newton al-
gorithm that repeatedly linearizes the nonlinear constraints
and solves a sequence of `1-norm minimization problems.
As a more detailed description is beyond the scope of this
paper, we refer the interested reader to [10].

Once the basis A is recovered, we reconstruct Z us-
ing sparsity as a guide. Assuming A has been correctly
estimated, each pixel of the target high-resolution image
should admit a sparse representation in terms of the columns
of A: Z(i, j, ∗) = Ah(i, j). We seek the sparsest co-
efficients h(i, j) that satisfy the measurement equation
Yrgb(i, j, ∗) = PrgbAh(i, j):

h(i, j) = argminh ‖h‖1
s.t. ‖Yrgb(i, j, ∗)− PrgbAh‖2 ≤ ε.

(6)

Above, ε is a parameter that reflects the noise level in the
RGB image. We can then use the estimated coefficients ĥ
to form our estimate of Z:

Ẑ(i, j, ∗) = Aĥ(i, j). (7)

5. Experiments
To assess the performance of the proposed method, we

conduct both simulation and real-world experiments. We
compare the proposed method with the component substi-
tution method [2] as well as three methods based on Prin-
cipal Component Analysis (PCA) [22] that we have devel-
oped. In Section 5.2, we use these methods as baselines
for a quantitative comparison with real hyperspectral data
and a simulated RGB image. Finally, in Sec. 5.3, we show
the effectiveness of our method in practice, using images
acquired with our own hardware setup.

2For example, if n ≤ S and Q has Bernoulli nonzeros with magnitudes
following from any absolutely continuous probability distribution, it is not
difficult to show that with high probability the decomposition is unique
provided wh = Ω(n logn).

3The reader familiar with the sparse approximation literature may rec-
ognize the problem of factoring Ỹhs into A and Q as an instance of the
“dictionary learning” problem discussed in the survey paper [26] and ref-
erences therein. Study of this problem in imaging dates back at least to
the seminal work of Olshausen and Field [19], since which many local op-
timization algorithms have been proposed. We expect that many of these
algorithms, such as the K-SVD [1], can also be profitably applied to our
problem.



Balloons Beads Sponges Oil painting Flowers CD Fake and real Photo and face
peppers

Figure 1. Simulated RGB images using the database [33].

Image set
Method Balloons Beads Sponges Oil painting Flowers CD Fake and real Photo

peppers and face
CSM [2] 13.9 28.5 19.9 12.2 14.4 13.3 13.7 13.1
Global 6.9/4.7 10.5/8.8 15.4/12.3 5.4/3.8 9.8/8.9 10.3/10.0 7.1/5.9 4.7/3.8
Local window 7.0/4.9 10.6/8.9 14.0/10.6 5.7/4.1 7.5/6.3 9.6/9.2 8.8/8.0 10.9/10.5
RGB clustering 6.6/4.3 9.7/7.9 13.6/10.0 5.5/4.0 7.8/6.5 9.1/8.6 8.5/7.6 4.7/3.8
Factorization 3.0/3.0 9.2/9.2 3.7/3.7 4.7 / 4.7 5.4/5.4 8.2/8.2 4.7/4.7 3.3/3.3

Table 1. Numerical comparison of RMSE (Root Mean Squared Error) between methods. Two numbers are before/after the back-projection
refinement. The numbers are shown in the range of 8-bit images. Those in bold are the best score among the methods.

5.1. Baselines: PCA Variants
The approaches in this section are motivated by the em-

pirical observation that real scene radiances vary smoothly
with wavelength, and hence can be represented using rel-
atively small numbers of basis functions [16, 30, 7, 21].
One natural approach to obtaining basis is to apply Prin-
cipal Component Analysis (PCA) to the hyperspectral ob-
servations.

Let APCA ∈ RS×3 be a matrix whose columns are the
first three principal components of Ȳ. If the columns of
APCA capture most of the variance in the hyperspectral im-
age, and they are not orthogonal to Prgb, we may be able to
use them to estimate Z, via

q(i, j) = (PrgbAPCA)†Yrgb(i, j, ∗), (8)

ẐPCA(i, j, ∗) = APCAq(i, j), (9)

where (·)† denotes the matrix pseudo-inverse. We call this
approach the “Global PCA” method.

Since the variation of spectrum across the whole scene
can be larger than three dimensions, the straightforward
global method might not accurately reconstruct the hyper-
spectral image. In this case, it may be better to replace
the global linear model of PCA by a local linear model,
given by fitting data in a neighborhood of each given pixel.
Because these local windows overlap, the estimated local
bases share some spatial coherence. We call this method a
“Local window” method in this experiment.

The two methods based on local window and the global
PCA method have individual drawbacks. The global PCA
method does not have flexibility to represent variations in
spectra, and the local window method does not consider
any color similarity in each window. To include both lo-
cal and global characteristics, another idea is to cluster the

high-resolution pixels based on their RGB values, and then
estimate a separate basis for each color cluster individually.
This “RGB clustering” method assumes that for the same
scene with the same RGB color value, it should produce
the same hyperspectral values. Although this assumption
is limited in some situations, we find that it leads to better
estimates than simple PCA methods.

Refinement by back-projection If the reconstructed im-
age Ẑ does not satisfy the observation equation Prgb[Ẑ] =
Yrgb, it can be further refined using via backprojection,
an interative method for finding a minimum-norm pertur-
bation of Ẑ such that the observation equation is satis-
fied. This approach is often used in image super-resolution
methods [29]. In image super-resolution, the reconstructed
high-resolution image, after down-sampling, needs to be the
same as the original low resolution input. In our case, we
can also incorporate the second constraint Phs[Z] = Yhs to
further improve the result. In our experiments, we find that
for the simple PCA methods introduced above, backprojec-
tion bring Z significantly closer to the ground truth.

5.2. Performance and Accuracy
We have conducted experiments using a spectral image

database described in [33], which provides spectral images
of 32 scenes, sampled every 10 nm from 400 nm to 700 nm,
by using a liquid crystal tunable filter, VariSpec [31] with
a black/white cooled CCD camera, Apogee Alta U260 [3].
Images were taken with fixed focus, in 16-bit PNG format,
and the resolution is 512 by 512 pixels.

To simulate a low-resolution camera, we down-sampled
them to 16 by 16 pixels. The RGB camera response were
simulated by integrating them over the wavelength, using
the filter characteristics of DSLR camera, Nikon D1. We



Input images: Balloons and Beads examples.

Ground truths.

Reconstruction using component substitution method [2].

Reconstruction using matrix factorization and refinement.

Error images of the matrix factorization and refinement.
Figure 2. Spectral images. The top row: Input images, sampled at 460, 550 nm, and the RGB image, from left to right. The first three
images are from Balloons example. The remaining images are the inputs of Beads. The second row: Ground truths, sampled at 460, 550,
and 620 nm. The order is the same in the following rows. The third row: Reconstructed results of component substitution method [2]. The
fourth row: Results of the proposed method. The bottom row: Error images of the proposed method.

used 8 examples in the database, and their simulated RGB
images are shown in Fig. 1. Down-sampled images are
shown in the top row in Fig. 2.

To evaluate the performance of the proposed method, we
implemented the following five methods: (1) Component
substitution method [2], (2) Global PCA, (3) Local win-
dow, (4) RGB clustering methods (described in Sec. 5.1),
and the proposed method - (5) Matrix factorization method
(described in Sec. 4.) Then, we apply a refinement method
to the initial estimates from these methods by the back-

projection described in Sec. 5.1 For the RGB clustering,
we used k-means clustering with k = 10, and used chro-
maticity and spatial coordinate for the feature space. For
the matrix factorization method, we used 0.5 for ε in Eq. (6),
and used the top 6 bases in A that contribute to each low-
resolution spectrum, when doing the reconstruction.

The RMSE (Root Mean Squared Error) between the re-
constructed spectral images and the ground truths (origi-
nal data) are summarized in Table 1. Each row shows the
RMSE of the initial estimate of each method, and the RMSE
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Figure 3. Comparison of spectra.

Lens Variable filter

Board camera

Adjustable slit Translation stage

Figure 4. Hyperspectral camera.

after the back-projection refinement. The RMSE values are
shown in the range of 8-bit images. The average of the RM-
SEs are 16.1, 7.3, 7.8, 6.6 and 5.3 (6.3, 2.9, 3.1, 2.6, and
2.1 %) of 255 for CSM, Global PCA, Local window, RGB
clustering and Matrix factorization methods. The numbers
show the effectiveness of the proposed method. The table
also shows that back-projection further improves the recon-
struction error of the initial estimate.

The examples of the reconstructed images are shown in
Fig. 2. The first and second rows show the inputs and the
ground truths of Balloons and Beads examples, of 460, 550,

and 620 nm. The third row shows the reconstructed results
of the component substitution method [2], which suffers
from the large resolution difference between the hyperspec-
tral and RGB images. The fourth and the bottom rows show
the results and the errors of the matrix factorization method.
The positive errors are shown in red, and negative ones are
in blue. The proposed method succeeds to recover the de-
tails while maintaining the spectral information. The errors
are large around specular pixels that changes rapidly with
respect to the image resolution.

Fig. 3 shows the reconstructed spectra of three pixels in
Sponges and Fake and real peppers. The ground truth is
shown as a bold line, and the reconstructed spectra of (1)
Global PCA, (2) Local window, (3) RGB clustering and (4)
Matrix factorization are also shown. Global PCA tends to
distort the spectra due to the gross assumption that every
spectra can be represented by three dimensional basis func-
tions. All the methods perform reasonably well, but above
all, the matrix factorization method provides the best re-
sults.

5.3. Real-world examples
Experimental setup In order to obtain real image data to
validate our hybrid frame-work we need two types of im-
ages. The first is high-spatial resolution RGB camera with
known spectral and intensity response functions, and the
second is low spatial resolution, hyperspectral camera.

To obtain high-resolution RGB images, we used the
4008× 2672 Lumenera LW11509 camera with a long focal
length lens. This camera uses the Kodak KAI-11002 sen-
sor that has large pixel, linear response function and known
spectral response for the RGB channels. The camera was
used with an integral Schott BG40 as an IR cutoff filter.

To obtain hyperspectral images, we built the device
shown in Fig. 4. This device uses variable linear band pass
filter (Schott Veril 60), in conjunction with an adjustable slit
(Thorslab VA100/M) for bandwidth control and a CMOS
B/W sensor with a known response function (Point Grey
Firefly MV set to 640 × 480 resolution). The position of
the filter is controlled by a computerized translation stage
(Zaber zaber KT-LSM100A). This setup is more econom-
ical than a tunable filter that are significantly more expen-
sive, and provides better control than uncontrolled modu-
lation imaging [27] because the filter is stationary during
image capture at any desired exposure time. We calibrated
our device using several narrow band filters. Because the re-
peatability of the translation stage is very accurate, we only
need to calibrate once. The camera can sample spectra at
every 5 nm from 415 nm to 730 nm. We also used several
narrow band filters to capture short wavelengths under 450
nm to ensure reliable measurement.

To capture images from the same view point, a beam
splitter is usually used. However, since we did not need to
capture them simultaneously, we simply replaced the cam-



Input RGB Input (550nm) Estimated (550 nm) Input (620 nm) Estimated (620 nm)
Figure 5. The figures show two zoomed views of the high-resolution image: The input and estimated spectral images of 550 and 620 nm.

era while maintaining the same view point. The slight dif-
ference of viewpoints were compensated by using the affine
transformation.

Results The input and reconstructed images of a printed
painting is shown in Fig. 5. The figure shows two zoomed
views of the painting. The high resolution RGB camera
can visualize the printing pattern, which is neither visible
to the human eyes nor to the low-resolution camera. The
proposed method recovers spectral images of the painting
in details, and provides visually pleasing results as shown
in the figure. With the proposed method, highly detailed
spectral information is acquired in a very efficient manner,
both in terms of the acquisition time and the cost of the
equipment.

6. Discussion
As shown in the experiments, the matrix factorization

method and the RGB clustering method perform better than
the others. This may not be surprising, since the two meth-
ods are similar in a sense that they utilize a kind of seg-
mentation in spectra/RGB domains. They may be further
improved by jointly using those sources of information.
The distribution of the reconstruction errors of the pro-
posed method is unique compared to those of the PCA-
based methods. The proposed method sometimes fails to
reconstruct specific colors, while errors are equally dis-
tributed to many colors when PCA-based methods were
used. PCA-based methods seem to suffer more than the
proposed method, because they discard the spectral infor-
mation that lies in more than three dimensions.

The proposed method has more advantages in con-
trast with interpolation/super-resolution or pan-sharpening
methods, since these methods can usually only magnify an
image up to a factor of 8, but our proposed method can mag-
nify the hyperspectral image 32 times larger (32 × 32 res-
olution). Images with such a large magnification factor are
almost impossible to be reconstructed correctly by the cur-
rent state-of-the-art methods.

There are limitations with the proposed method. The
method sometimes produces errors in some bands, when
more than a few number of basis functions are required to
reconstruct the full spectral image. This is a general limi-
tation for all methods that assume a small fixed number of
basis functions. However, in scenes that are composed of
a limited number of materials, our results clearly surpass
the results of all other straightforward methods. Thus, our
method has an advantage over these methods.

The refinement by the back-projection was not signif-
icant for the results of the matrix factorization method.
This is because the downsampled values from the recov-
ered spectra are already very close to those in the original
RGB/spectral images when using the method.

The issue with the matrix factorization method is the
computational time. For 4008 × 2672 images, it takes sev-
eral hours to do the factorization, and several hours to do the
reconstruction, using a high-end machine with eight cores.
The current implementation uses Matlab 7.0. We plan to
speed up the process by using GPU or multi-thread pro-
gramming. There are parameters that have to be chosen
with the method. The epsilon depends on the noise level,
and the number of bases that contribute to a pixel is chosen
empirically in the paper, but is fixed for all examples. We
consider that the latter can be roughly determined as long as
the convergence of the factorization is ensured.

7. Conclusion
We have proposed an efficient method to acquire high-

resolution hyperspectral images, by jointly using a high-
resolution RGB camera with a low-resolution hyperspec-
tral camera. Assuming that only a few materials contribute
to each pixel in the hyperspectral image, our method finds
the optimal set of basis functions by factorizing the hyper-
spectral image into the basis and its sparse coefficients via
`1-norm minimization. The spectrum at high-resolution is
then reconstructed using the estimated basis and the RGB
values. Comparison between the method and several sim-
ple approaches shows the effectiveness of the method. The



method enables to capture high-resolution hyperspectral
image at reasonable cost and acquisition time.
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