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Abstract

We propose a calibration-free gaze sensing method using
visual saliency maps. Our goal is to construct a gaze esti-
mator only using eye images captured from a person watch-
ing a video clip. The key is treating saliency maps of the
video frames as probability distributions of gaze points. To
efficiently identify gaze points from saliency maps, we ag-
gregate saliency maps based on the similarity of eye ap-
pearances. We establish mapping between eye images to
gaze points by Gaussian process regression. The experi-
mental result shows that the proposed method works well
with different people and video clips and achieves 6 degrees
of accuracy, which is useful for estimating a person’s atten-
tion on monitors.

1. Introduction
Gaze estimation is important for predicting human at-

tention, and therefore can be used for various interactive
systems. There are a wide range of applications of gaze es-
timation including marketing analysis of online content and
digital signage, gaze-driven interactive displays, and many
other human-machine interfaces.

In general, gaze estimation is achieved by analyzing a
person’s eyes with an image sensor. Exact gaze points can
be determined by directly analyzing gaze directions from
observations of eyes. Many implementations of camera-
based gaze estimator have been proposed including com-
mercial products (see [3] for a recent survey). One of
the limitations of camera-based gaze estimators is explicit
calibration for learning person-dependent parameters. Al-
though the number of reference points for calibration can
be reduced using multiple light sources [18], or stereo cam-
eras [12], it still requires a user to actively participate in
the calibration task. In some practical scenarios, the active
calibration is too restrictive because it interrupts natural in-
teractions and makes the unnoticeable gaze estimation im-
possible.

To avoid active calibration, Yamazoe et al. used a simple

Figure 1. Illustration of our method. Our method uses saliency
maps computed from video frames in bottom-up manner for auto-
matically constructing a gaze estimator.

eyeball model for gaze estimation and performed automatic
calibration by fitting the model to appearance of a user’s
eye [19]. Sugano et al. proposed a method using input from
a user’s mouse as exemplar data for calibration [17]. How-
ever, these approaches are restricted to specific scenarios.
Yamazoe et al.’s approach relies on a specific geometric
model, and Sugano et al.’s approach can only be applied
to interactive environments with user inputs.

Apart from these gaze estimation studies, computational
models of visual saliency have been studied to analyze vi-
sual attention on an image. While gaze estimation ap-
proaches aim at determining where people’s eyes actually
look at, the visual saliency give us information about which
image region attracts more attention, as illustrated in Fig-
ure 1. Biologically, humans tend to gaze at an image region
with high saliency, i.e., a region containing more unique
and distinctive visual features compared with the surround-
ing regions. Hence, by knowing the visual saliency map
of an image, the gaze point of a person looking at an im-
age can be predicted. After Koch and Ullman proposed the
original concept [11] of visual saliency, many bottom-up
computational models of visual saliency maps have been
proposed [7, 15, 5, 4, 1]. It is experimentally shown that
there indeed exists a correlation between bottom-up visual
saliency and fixation locations [14].

Gaze estimation and visual saliency models are closely
related; nonetheless, not many previous studies relate these
two. Kienzle et al. [10, 9] proposed a method for learning
computational models of bottom-up visual saliency using
gaze estimation data. Judd et al. [8] followed the approach
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Figure 2. Proposed framework. Our method consists of three steps. Saliency extraction step computes saliency maps from the input video.
Saliency aggregation step combines saliency maps to produce gaze probability maps. Using the gaze probability maps and associated eye
images, the estimator construction step learns the mapping from an eye image to a gaze point.

with more features and a larger database. These approaches
learn accurate saliency models using gaze points. In con-
trast to these methods, our goal is to construct a gaze estima-
tor from saliency maps. To our knowledge, this is the first
work to use visual saliency as prior information for gaze
estimation.

We propose a novel calibration-free gaze sensing method
using computational visual saliency. The key idea of our
method is generating a probability distribution of gaze
points using saliency maps. From eye images of a user
watching a video clip, we acquire learning datasets that con-
sists of saliency maps and eye images under a fixed head
position. Gaze probability maps are generated by aggregat-
ing the saliency maps based on the similarity of eye appear-
ances. Once the gaze probability maps are obtained, our
method learns the relationship between the gaze probability
maps and eye images. As a result, this leads to a completely
ambient gaze estimator that exempts users from active cali-
bration.

2. Gaze estimation from saliency maps
Our goal is to construct a gaze estimator without any

explicit calibration stages. The inputs for our system are
N video frames {I1, . . . , IN} and associated eye images
{e1, . . . , eN} of a person watching a video clip under a
fixed head position. In our setting, eye images and video
frames are synchronized; eye image ei is captured at the
same time when frame Ii is shown to the person. Using this
dataset {(I1, e1), . . . , (IN , eN )}, our goal is to construct a
gaze estimator for estimating an unknown gaze point g from
an eye image e.

Our method consists of three steps; saliency extraction,
saliency aggregation, and estimator construction as shown

in Figure 2. Saliency extraction, is the step in which
saliency maps from an input video are calculated. From the
video clips, a visual saliency map that represents distinctive
visual features is extracted from each frame. Saliency ag-
gregation combines all saliency maps to obtain a gaze prob-
ability map that has a peak around the true gaze point. This
step produces pairs of the average eye image and gaze prob-
ability map. The third step is the estimator construction.
Using the gaze probability maps and associated eye images,
the estimator construction step learns the mapping from an
eye image to a gaze point. The resulting gaze estimator out-
puts gaze points for any eye image from the person. Details
of each step are described in the following sections.

2.1. Saliency extraction

This step extracts visual saliency maps {s1, . . . , sN}
from input video frames {I1, . . . , IN}. We use graph-based
visual saliency [4] as a base saliency model. In our method,
we use commonly used feature channels, i.e., color, inten-
sity, and orientations as static features, and flicker and mo-
tion are used as dynamic features. These features are de-
tailed in, e.g., [6]. All feature maps are combined with the
same weight to form a low-level saliency map sl.

On top of the low-level saliency, we use a higher level
saliency model. Humans tend to fixate on faces, especially
the eyes, which are highly salient for humans. Cerf et
al. [2] proposed a face channel-based saliency model using
a face detector. We follow this approach to produce reli-
able saliency maps using a facial feature detector (OKAO
Vision library developed by OMRON Corporation). The
face channel saliency map sf is modeled as 2-D Gaussian
circles with a fixed variance at the detected positions of the
center between two eyes. When the detector detects only a



Figure 3. Examples of computed saliency maps. First row
shows input images I , second row shows corresponding low-level
saliency sl, third row corresponds to face channel saliency sf , and
the bottom row shows combined saliency maps s.

face, e.g., when the face region is small, the facial saliency
is defined at the center of the facial region.

We combine the low-level saliency sl and face chan-
nel saliency sf after normalizing them to span in the same
range. We also take the temporal average of the aggregated
saliency maps to compute the final saliency map s as

si =
1

2(ns + 1)

i∑
j=i−ns

(slj + sfj ), (1)

where ns is the number of frames used for temporal smooth-
ing. Since humans cannot instantly follow rapid scene
changes, only past frames are used for the smoothing to ac-
count for latency. As a result, synchronized pairs of saliency
maps and eye images Ds = {(s1, e1), . . . , (sN , eN )} are
produced.

Figure 3 shows examples of the computed saliency maps.
From top to bottom are input images I , low-level saliency
sl, face channel saliency sf , and combined saliency maps
s.

2.2. Saliency aggregation

Although saliency maps extracted in the previous step
accurately predict gaze points, the accuracy is still not good
enough to determine exact locations of gaze points.

The saliency maps s encode distinctive visual features in
a video frame. While a saliency map does not provide ex-
act gaze points, highly salient regions in a saliency map are

likely to coincide with the true gaze point. Suppose we have
a set of saliency maps that statistically have high saliency
scores around the true gaze point, with random saliency
scores at other regions. By aggregating the saliency maps, it
is expected that the image region around the true gaze point
has a vivid peak of saliency. The map can be used as the
probability distribution of the gaze point. This step aims at
producing such probability maps using the associated eye
images.

Our basic idea is to use a similarity of eye images for the
aggregation. The similarity measure ws is defined as

ws(ei, ej) = exp(−κs||ei − ej ||2). (2)

When the gaze points of eye images ei and ej are close, the
appearances are similar and ws becomes high.

In this step, we first eliminate unreliable eye images, e.g.,
images during blinking, from the learning set. Eye images
recorded during fixation are useful as a learning data. To
identify such eye images, we use a fixation measure of an
eye image e defined as

wf (ei) = exp(−κfVar(ei)), (3)

where Var(ei) denotes the variance of eye images
{ei−nf

, . . . , ei+nf
} averaged over pixels. Since ap-

pearances of the eye images change rapidly during
fast movement, wf becomes lower when ei is cap-
tured during eye movement or blinking. A subset
Ds′ = {(s1, e1), . . . , (sN ′ , eN ′)} is created from Ds by
removing eye images where wf scores are lower than a
predefined threshold τf .

Since variation in the gaze points is limited in Ds′ , and
there can be many samples that share almost the same gaze
point, eye images are clustered according to similarityws to
reduce redundancy and computational cost. Each eye image
e is sequentially added to the cluster whose average eye
image ē is the most similar to e. A new cluster is adaptively
created if the highest similarity among all existing clusters
is lower than the threshold τs. Finally, M clusters and their
average eye images {ē1, . . . , ēM} are calculated.

After these steps, we compute the gaze probability map
p̄i as

p̄i =

∑N ′

j ws(ēi, ej)(sj − s̄all)∑N ′

j ws(ēi, ej)
, (4)

where s̄all is the average of saliency maps in Ds′ . Man-
made pictures usually have higher saliency at the center of
the image, Hence, without normalization, the gaze probabil-
ity map p̄i tends to have higher value at the center regardless
of ēi. The average saliency map s̄all is used to eliminate this
centering bias in the gaze probability map. Each gaze prob-
ability map p̄i is normalized to a fixed range. Finally, we
obtain a dataset Dp = {(p̄1, ē1), . . . , (p̄M , ēM )}.



Figure 4. Examples of gaze probability maps p̄ and corresponding
average eye images ē. Overlaid circles depict true gaze points of ē
to illustrate the correspondence between a gaze point and the peak
in the gaze probability. The true gaze points are obtained using a
calibration-based gaze estimator, and our method does not know
the true gaze points.

Figure 4 shows examples of the obtained gaze probabil-
ity maps. The eye images shown at the top-left indicate cor-
responding average eye images ē. The six images are some
examples taken from six different people. The overlaid cir-
cles indicate true gaze points of ē. The true gaze points
are unknown in our method, and these are obtained using a
calibration-based gaze estimator and placed as a reference.
Although the gaze probability maps p̄i are generated with-
out knowing true gaze points, these highly correspond to the
true gaze points.

Figure 5 shows the improvement of the correlation be-
tween the true gaze point and saliency maps by this ag-
gregation step. The curves are drawn by changing saliency
threshold values from minimum to maximum. The horizon-
tal axis indicates a false positive rate, i.e., rate of pixels in
a map above a threshold. The vertical axis indicates a true
positive rate, i.e., rate of frames whose saliency value at the
true gaze point is higher than the threshold. This plot is ob-
tained using all data used in our experiment. The thin line
shows the average receiver operating characteristic (ROC)
curve (area under the curve (AUC) = 0.73) of the extracted
saliency maps before aggregation. After aggregation, the
accuracy is improved as shown by the bold line in Figure 5,
which shows the average ROC curve (AUC = 0.90) of all
the gaze probability maps.
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Figure 5. ROC curves of raw saliency maps and gaze probability
maps. Horizontal axis indicates the false positive rate, i.e., pixel
rate above a threshold. Vertical axis indicates the true positive
rate, i.e., rate of frames which have a higher saliency value than
a threshold at the true gaze point. Thin line (AUC = 0.73) in-
dicates raw saliency maps extracted through process described in
Section 2.1. Bold line (AUC = 0.90) corresponds to the gaze prob-
ability maps described in Section 2.2.

2.3. Estimator construction

In the previous step, the average eye images
{ē1, . . . , ēM} and corresponding gaze probability maps
{p̄1, . . . , p̄M} are produced.

In a standard Gaussian process regression, a
model can be built to estimate the probability dis-
tribution P (g∗|e∗,Dg) of an unknown gaze point
g∗ of an eye image e∗, given labeled data points
Dg = {(g1, ē1), . . . , (gM , ēM )}. However in our case, we
only know Dp = {(p̄1, ē1), . . . , (p̄M , ēM )} where p̄i can
be treated as a probability map of gi.

Therefore, we re-formulate Gaussian process regression
using the probability maps as follows. By normalizing the
gaze probability maps, we define probability distributions
as

P (g|p̄) = p̄(g)∑
x

∑
y p̄

, (5)

where p̄(g) indicates the value of p̄ at the gaze point g, and∑
x

∑
y p̄ indicates overall summation of p̄. Here, we de-

scribe the case of estimating one-dimensional scalar g to
simplify the notation; however, two regressors are indepen-
dently built for each X- and Y-direction. Given Eq. (5),
the target distribution P (g∗|e∗,Dp) can be obtained by
marginalizing over all possible gaze points {g1, . . . , gM}
as

P (g∗|e∗,Dp) =∑
g1

· · ·
∑
gM

P (g∗|e∗,Dg)P (Dg|Dp), (6)



where

P (Dg|Dp) =

M∏
i

P (gi|p̄i). (7)

In Eq. (6), g∗ indicates the unknown gaze point of the eye
image e∗, and gi is the gaze point corresponding to ēi.

Because the integral (summation) of Eq. (6) is com-
putationally expensive, we solve Eq. (6) by Monte Carlo
approximation. We randomly produce ng sets of sam-
plesD(l)

g = {(g(l)1 , ē1), . . . , (g
(l)
M , ēM )}ng

l=1 according to the
probability distribution defined by Eq. (5). Namely, g(l)i

in the l-th set is generated according to the distribution
P (gi|p̄i) defined by the i-th probability map. Because the
gaze probability maps accurately predict true gaze points as
shown in Figure 5, the low saliency values from the gaze
probability maps are cut off to reduce the number of sam-
ples in the approximation. We use a threshold τs to set the
probability to zero if p̄(x, y) is lower than the threshold.
Using these sets, Eq. (6) can be approximated as

P (g∗|e∗,Dp) =
1

ng

ng∑
l=1

P (g∗|e∗,D(l)
g ). (8)

Finally, each P (g∗|e∗,D(l)
g ) can be estimated based on a

Gaussian process regression [16].

Gaussian process regression We assume a noisy ob-
servation model gi = f(ei) + εi, i.e., a gaze point gi is
given as a function of eiwith the data-dependent noise term
εi = N (0, ς2i ). In standard methods, the noise variance ς2 is
treated as an unknown parameter that takes a constant value
across all data. In our case, because the sample distribution
is known, the noise variance ς2i can be set to an actual vari-
ance of generated samples {g(1)i , . . . , g

(ng)
i }. It explicitly

assigns a higher noise variance for samples from ambigu-
ous saliency maps with several peaks. f(ei) is assumed to
be a zero-mean Gaussian process with a covariance function
k:

k(ei, ej) = α exp(−β||ei − ej ||2), (9)

with parameters α and β. With this assumption,
P (g∗|e∗,D(l)

g ) is derived as a Gaussian distribution
N (µl, σ

2
l ) with

µl = K∗(K + S)−1G(l), (10)

and

σ2
l = k(e∗, e∗)−K∗(K + S)−1tK∗, (11)

where Kij = k(ēi, ēj), K∗
i = k(ēi, e

∗), Sij = ς2i δij and
G

(l)
i = g

(l)
i

1. As a result, the distribution P (g∗|e∗,Dp)

1K ∈ RM×M , K∗ ∈ R1×M , S ∈ RM×M and G(l) ∈ R1×M

can be estimated as a Gaussian distribution N (µ, σ2) with

µ =
1

ng

ng∑
l=1

µl, σ
2 =

1

ng

ng∑
l=1

σ2
l = σ2

1 . (12)

The variance σ2 equals to σ2
1 , because σ2

l of Eq. (11) is
independent of the index l. Therefore, σ2 can be calculated
by taking σ2

1 .

2.4. Gaze estimation

Once we have matrices K, S and {G(1), . . . ,G(ng)} in
Eqs. (10) and (11), a gaze point can be estimated by tak-
ing any eye image e as input. The estimated distributions
for each X- and Y-direction, N (µx, σ

2
x) and N (µy, σ

2
y),

are converted to the display coordinates N (µ̂x, σ̂
2
x) and

N (µ̂y, σ̂
2
y) as

µ̂x = xo +
WI

Ws
µx, µ̂y = yo +

HI

Hs
µy, (13)

and

σ̂2
x =

WI

Ws
σ2
x, σ̂

2
y =

HI

Hs
σ2
y, (14)

whereWs,Hs indicates the width and height of the saliency
maps, WI , HI indicates the actual width and height of the
displayed images {I1, . . . , IN}, and (xo, yo) indicates the
display origin of the images. The average (µ̂x, µ̂y) corre-
sponds to the estimated gaze point g.

3. Experimental results
In this section, we show experimental results to evalu-

ate our method. In the experiments, we used four video
clips from four films: A) 2001: A Space Odyssey, Stan-
ley Kubrick, 1968, B) Dreams, Akira Kurosawa, 1990, C)
Nuovo Cinema Paradiso, Giuseppe Tornatore, 1988 and D)
Forrest Gump, Robert Zemeckis, 1994. It is known that hu-
man gaze control is also strongly influenced by contexts and
plots of films, however, such high-level attentions are not
modeled by the bottom-up saliency model we employed.
Hence, each film was shortened to a 10-minute video clip
without audio signal by extracting 2-second sequences at
regular intervals to remove these effects. The video clips
were resized to a fixed dimension of 720 × 405, and the
display resolution was set to WI = 1920 and HI = 1080.
The video clips were shown at 15 fps; therefore, N = 9000
in the experiments. The saliency maps were calculated at a
smaller resolution, Ws = 32 and Hs = 18.

Six novice test subjects s1 . . . s6 were asked to watch two
video clips. The combinations of video clips and test sub-
jects are defined so that every clip was tested as learning
data against three different subject persons as listed in Ta-
ble 1. A chin rest is used to fix their head positions, and



Figure 6. Estimation results. The estimation results are rendered as 2-D Gaussian circles. The corresponding input eye images are shown
at the top-left corner. Overlaid circles are the ground truth gaze points obtained from a calibration-based gaze estimator.

Table 1. Combinations of video clips A to D and test subjects s1
to s6. For example, person s1 watched clips A and B.

Destination
Source A B C D

A s1 s2 s3
B s1 s4 s5
C s2 s4 s6
D s3 s5 s6

a 22.0-inches WUXGA (473.8 × 296.1 mm) display was
placed 400 mm in front of the subject when video clips
were shown. While the subjects were watching the clips,
their eyes were automatically detected and captured using
OMRON OKAO Vision library.

The ground truth calibration data were collected for each
user by showing reference points in a separate stage. For
this, 16× 9 points were shown at 120× 120-pixel intervals
and eye images were captured in the same way. The ground
truth was used to quantitatively assess our method in com-
parison with the gaze estimation method that involves an
explicit calibration stage.

Throughout the experiment, the parameters were set
as follows; ns = 5, κs = 7.8× 10−7, τs = 0.4, nf = 5,
κf = 0.02, ng = 50, α = 50, β = 5.0× 10−9, and τs was

adaptively set to keep the top 20% of pixels and set remain-
ing 80% to zero in each map. These parameter settings are
empirically obtained from our experiment. In our current
implementation, it took about 0.15 seconds per frame when
M ' 600 using a Core 2 Quad 2.66GHz with simple code
parallelization using OpenMP [13].

3.1. Gaze estimation results

Using the two clips × six subject people, we tested our
method in two scenarios. In Scenario 1, we assessed our
method using the learning dataset as a test dataset. Because
the true gaze points are not known in the learning dataset,
this experiment was designed to verify the performance of
the algorithm. In Scenario 2, evaluations were performed
using another dataset from the user as a test dataset to con-
firm the applicability of the trained gaze estimator to other
datasets.

The ground truth gaze points of the datasets were ob-
tained using a calibration-based gaze estimator. It was
achieved by a standard Gaussian process regression method
with a labeled dataset. Namely, pairs of the ground-truth
gaze points and eye images were explicitly given to learn
the relationship between gaze points and eye images. The
same covariance function (Eq. (9)) was used, and α and β
were set to be the same values as our estimator. The noise



variance ς2 was empirically set to zero under the assump-
tion that the ground-truth dataset is noise-free.

Figure 6 shows examples of the estimation results. Out-
puts of the estimators are rendered as 2-D Gaussian cir-
cles centered at (µ̂x, µ̂y) with variance (σ̂2

x, σ̂
2
y) given by

Eq. (12). The center coordinate (µ̂x, µ̂y) corresponds to the
estimated gaze point. The eye images shown at the top-
left corner show input eye images for estimation, and the
overlaid circles represent true gaze points obtained from the
calibration-based estimator.

Table 2 summarizes the estimation results for each video
clips. Each row corresponds to the average of three sub-
jects’ results where the corresponding video clip is used as
the training dataset (see Table 1). First two columns indi-
cate AUCs of average ROC curves of the raw saliency maps
s and gaze probability maps p̄. The rest of the columns in-
dicate estimation errors in distance and angle represented
as average ± standard deviation. Distance errors are eval-
uated as the Euclidean distance between the estimated and
ground-truth gaze points, and angular errors are calculated
using the distance between eyes and the display.

From these results, it is observed that the gaze estimation
accuracy depends on the accuracy of the gaze probability
maps. When the AUC of the gaze probability maps p̄ is
lower, the estimation error tends to become larger.

Table 3 lists the estimation error of each subject person.
Each row corresponds to average of results of the corre-
sponding test subject with two different training datasets.
The columns show AUCs and estimation errors in the sim-
ilar manner as in Table 2. In contrast to Table 2, subject
dependency of our method is not clearly observed.

The accuracy of our method has dependency on the dis-
tribution of learning samples. Figure 7 shows the spatial
distribution of average estimation errors. Each grid corre-
sponds to a reference point that is used to capture the cali-
bration data when producing the ground truth data. Using
eye images obtained from the ground truth dataset as input
to our method, we compute the errors of our method. Lower
intensity corresponds to the lower estimation error. From
this, the larger errors can be observed at edges of the dis-
play. Figure 8 shows the average saliency map and spatial
histogram of gaze points. The left image shows the average
of all raw saliency maps extracted from the four video clips
used in our experiment. The right image shows the spa-
tial histogram of ground-truth gaze points obtained from the
experiment dataset. Higher intensity corresponds to larger
amount of gaze points given at the grid. Usually salient ob-
jects are located at the center of video frames, and the gaze
point also tends to concentrate at the center of the display.
Because of these reasons, the number of learning samples
at the display edges are limited, and these cause the bias of
the estimation accuracy shown in Figure 7.

Figure 7. Spatial distribution of estimation errors in the display
coordinate. Lower intensity corresponds to the lower estimation
error as illustrated in the right bar.

Figure 8. Average saliency map and spatial histogram of gaze
points. Left image shows the average of all raw saliency maps ex-
tracted from four video clips used in the experiment. Right image
shows the spatial histogram of the ground-truth gaze points of ex-
perimental dataset. Higher intensity corresponds to larger counts
of gaze points.

4. Conclusions
We proposed a novel calibration-free gaze estimation

framework using saliency maps. By only using a synchro-
nized set of eye images and video frames, a gaze estimator
can be constructed by treating saliency maps as probabilis-
tic distributions of gaze points. To the best of our knowl-
edge, this is the first work to use saliency maps as the key
for gaze estimation. Our method naturally avoids an explicit
and noticeable gaze calibration step that is often demanding
for users. In our experimental setting with fixed head posi-
tions, our method achieves the accuracy of about 6-degree
error.

The estimation accuracy of our method depends on the
raw saliency maps extracted from input video clips. The
mechanism of human gaze control has not been completely
investigated, and there is a wide range of possibilities of
more advanced saliency models for accurately predicting
gaze. Our method can benefit from the further investigation
of more accurate saliency models.
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