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Abstract

We present a self-calibrating photometric stereo method.
From a set of images taken from a fixed viewpoint under
different and unknown lighting conditions, our method au-
tomatically determines a radiometric response function and
resolves the generalized bas-relief ambiguity for estimating
accurate surface normals and albedos. We show that color
and intensity profiles, which are obtained from registered
pixels across images, serve as effective cues for address-
ing these two calibration problems. As a result, we develop
a complete auto-calibration method for photometric stereo.
The proposed method is useful in many practical scenarios
where calibrations are difficult. Experimental results val-
idate the accuracy of the proposed method using various
real-world scenes.

1. Introduction

Photometric stereo [23] recovers surface orientations and
albedos from a set of images taken from a fixed viewpoint
under different lighting directions. There are two necessary
calibrations for a standard photometric stereo algorithm to
work correctly. First, the camera needs to be radiometri-
cally calibrated to obtain the scene irradiance from mea-
sured pixel values. Second, lighting directions and inten-
sities need to be known to uniquely determine the surface.
With these two calibrations, surface orientations and albe-
dos can be estimated uniquely from three images for Lam-
bertian scenes.

Typically, these calibrations are performed separately
before applying photometric stereo algorithms. The ra-
diometric camera calibration is often performed as a com-
pletely independent preprocessing step by, for example, us-
ing multiple images [|5] captured from a fixed viewpoint
under a static lighting configuration with different exposure
times. In practice, however, this involves an additional data
measurement that is not always possible. The lighting direc-
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tions and intensities are often recorded by putting a mirror
sphere and a Lambertian sphere in the scene. These ad-
ditional calibration objects make the process complicated
and could even introduce interreflections that eventually in-
crease error. On the other hand, if the lighting parameters
are unknown, surface normals of a Lambertian scene can
only be recovered up to a 3 x 3 linear ambiguity [10]. If
the surface is known to be integrable, this ambiguity can be
reduced to the generalized bas-relief (GBR) ambiguity [3].
Without additional prior knowledge about the scene, or the
lighting, this shape/lighting ambiguity cannot be resolved.
Hence, these two calibrations limit the practical applica-
tions of photometric stereo.

In this paper, we address these two calibration problems
without using any additional input data, or calibration ob-
jects. From a set of images taken from a fixed viewpoint un-
der unknown and varying lightings with an unknown cam-
era response function, our method automatically recovers
both the camera’s radiometric response function and the un-
known lighting directions and intensities. Our method uses
color and intensity profiles to achieve this goal. A color
profile is defined as the set of measured RGB colors at a
pixel across images. A color profile draws a 3D curve in
the RGB color space. An intensity profile is defined as
an ordered sequence of scene irradiance at a pixel across
images. An intensity profile corresponds to a 2D curve in
the irradiance-time space, similar to the appearance profiles
shown by Koppal and Narasimhan [12]. Our method uses
color profiles to determine the radiometric response func-
tion, and intensity profiles to resolve the GBR ambiguity.
Putting them together, we build a self-calibrating photomet-
ric stereo method.

The rest of the paper is organized as follows. After dis-
cussing prior work, we describe the problem and overview
of our approach in Section 2. Section 3 describes the pro-
posed radiometric calibration method based on the color
profiles, and Section 4 explains the method for GBR dis-
ambiguation using intensity profiles. Section 5 shows the
experimental results followed by discussions.
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Figure 1. Overview of the proposed method. The proposed method automatically performs radiometric self-calibration and GBR disam-
biguation from the input images and gives estimated surface normals and depth maps as output.

1.1. Related works

Our work is related to both radiometric calibration and
GBR disambiguation. Several methods have been pro-
posed to estimate camera response functions. One of
the most widely used methods is Mitsunaga and Nayar’s
method [15], which uses multiple images of a static scene
with multiple different known exposure times. More re-
cent methods work under more general imaging conditions.
Lin et al. [13] proposed a method that only requires a sin-
gle color image. Later they extended it to work with a sin-
gle gray-scale image [14]. These methods are based on
color/intensity mixtures on edge boundaries. There are a
few works that allow scene/camera movements during data
capturing. Kim and Pollefeys [11] computed pixel corre-
spondence across image frames for radiometric calibration.
Grossberg and Nayar [8] used intensity histograms of two
images of different exposure rather than exact pixel corre-
spondence. Wilburn et al. [22] showed the response func-
tion can be recovered from a motion blur in a single im-
age. Unlike all of these methods, our radiometric calibra-
tion method uses photometric stereo images captured by a
static camera under varying lighting conditions.

The GBR ambiguity is an intrinsic shape/lighting am-
biguity for uncalibrated photometric stereo with unknown
lighting parameters. This ambiguity arises because different
combinations of shapes and lightings can produce the same
appearance. To resolve the GBR ambiguity, additional cues
are necessary. Prior knowledge about surface albedo can be
used to resolve the GBR [10, 1]. Chandraker et al. [4] used
interreflections in a Lambertian scene to resolve the ambi-
guity. It has been shown that the GBR can also be resolved
if the surface reflectance is known to be Lambertian com-
pounded with a Torrance-Sparrow specular reflection [7], or
with specular reflections containing specular spikes [0, 5].
More recently, Tan et al. [20, 21] showed that the GBR can
be reduced and resolved in a stratified manner for isotropic
surfaces. Besides resolving the GBR ambiguity, Basri et al.
[2] proposed a general solution under environment lighting.

Furthermore, to handle various BRDFs, Sato et al. [19] sug-
gested using the similarity in radiance changes and Okabe et
al. [17] utilized the attached shadow. Our method takes a
different approach from these. As we will see later in this
paper, our method can achieve a high-accuracy estimation
using the intensity profile as a cue.

The radiometric calibration and GBR disambiguation
have been discussed separately in prior works. To achieve
a complete auto-calibration in photometric stereo, we solve
the mixture of these problems. We take a fundamentally
different approach to achieve this goal using the color and
intensity profiles.

2. Problem statement

We perform photometric stereo with images taken from
a fixed viewpoint under varying and unknown directional
lighting (both intensities and directions are unknown) us-
ing a camera where the response function is also unknown.
We address the two calibration problems in this setting, i.e.,
radiometric camera calibration and GBR disambiguation.
In this paper, we use the following imaging model:

M = f(I) = f((pn) - (EL)), ()

where M is the recorded pixel value, and p and n are the
surface reflectance (or albedo) and the surface normal vec-
tor at a pixel. E and [ are the intensity and direction of the
directional lighting. I is the irradiance, and f is the cam-
era’s radiometric response function. Since the albedo p and
surface normal vector n are location dependent and light-
ing intensity E and direction I are image dependent, we use
subscripts ¢ and j to index pixels and images respectively.
For multiple images under varying directional lighting, the
imaging model can be written as

Mi; = f(Ii) = f((pimi) - (Ejl;)). )

Our goal is to estimate p;, n;, F;,1; and f from the obser-
vations M;;.



Radiometric response function The goal of radiometric
calibration is to estimate the radiometric response function
f that maps the irradiance I to a pixel intensity M. As the
response function f is a monotonic function, there is always
a unique inverse mapping g(= f~!). Radiometric calibra-
tion amounts to estimating the inverse response function g.

The generalized bas-relief ambiguity As in previous
work [10], the photometric stereo problem is formulated in
a matrix form:

I=SL, 3)

where I is a P x F' matrix containing irradiance values
from all images, and P and F' are the number of pixels
and images respectively. Each row of I corresponds to a
pixel position in an image, and each column corresponds
to a different image. The surface matrix S € RF*3 rep-
resents surface properties, i.e., the ¢-th row of S encodes
the surface normal at the i-th pixel scaled by its albedo as
S« = pin;. The lighting matrix L € R3*¥ represents the
lighting directions and intensities, i.e., the j-th column of
the matrix L corresponds to the lighting direction in the j-
th image scaled by its intensity as L,; = F;I;. When L is
unknown, S and L can be estimated only up to a GBR trans-
formation G by enforcing integrability over the surface as
I =SL = (S'G)(G'L’). The GBR transformation G is
a three-parameter matrix:

1 00 L[> 00
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The overview of the proposed method is illustrated in
Fig. 1. Our method uses color profiles for radiometric cali-
bration (Section 3) and intensity profiles for resolving GBR
ambiguity (Section 4).

3. Radiometric calibration using color profiles

This section describes our method for determining the
radiometric response function using color profiles. A color
profile is a set of RGB color values at the same coordinate
in a set of photometric stereo images. Our method capital-
izes on the fact that color profiles form straight lines in the
RGB color space when the radiometric response function f
is linear. On the other hand, if f is nonlinear, color profiles
form nonlinear curves in the RGB space.

To understand this relationship between color profiles
and the radiometric response function f, let us consider the
ratio between red, green and blue colors at a pixel. In a
color image, Eq. (2) is evaluated at each color channel, i.e.,
M" = f(I"), M9 = f(I9) and M® = f(I"), where su-
perscripts r, g, and b correspond to the RGB color chan-
nels. If the radiometric response function f is linear, i.e.,

Figure 2. Color profiles of a real-world scene taken by a cam-
era with a non-linear response function. The profiles show clear
curves in the RGB space.

f(x) = kx, the color ratio at a Lambertian point is
(M" = M9 M®) = (EI" - kI9 - kI®) = (p" : p? = p°), (5)

which is constant over the photometric stereo image se-
quences. Hence, in this case, a color profile is a straight line
with direction (p", p?, p®) passing through the origin in the
RGB space. On the other hand, if f is nonlinear, this ratio
will change over the image sequence. As a result, the color
profile bends to a nonlinear curve in the RGB space. This
result is consistent with the empirical observation in [18].
Examples of color profiles obtained from a real-world scene
are shown in Fig. 2.

The correct inverse response function g (g(M) = I)
should linearize the curved color profiles. Using this prop-
erty as a constraint, we estimate the inverse response func-
tion ¢ that maps curved color profiles to straight lines. We
first define a nonlinearity measurement for color profiles to
assess how the profiles are bended. We then formulate the
estimation problem in an energy minimization framework
to derive the inverse response function g.

Degree of nonlinearity We assess the degree of nonlin-
earity of a transformed color profile by its line fitting error.
Let us denote the RGB triplet of the measured color value
as M and use g(M) to represent that the inverse response
function g is applied to each element of M independently.
For a color profile at the i-th pixel, it is computed as

Di(g) = Z (X —X|¢) x (g(M;) _Xi)”’ ©)

X3 — Xl

where X and X are two points in the RGB space that
define the line best fits to the transformed color profile
g(M ). Intuitively, D measures the summed Euclidean
distance between g(M ;;) to the fitted line. It approaches to
zero when g is the correct inverse function.



Energy function We compute the inverse response func-
tion g from a set of color profiles {2 by minimizing the non-
linearity. We use a polynomial representation for the in-
verse response function to reduce the computational com-
plexity as in [15]. Thus, the inverse response function g is
described by a small number of unknown coefficients ¢ in
the form of K -order polynomial as

K
M) =Y cpM*. (7)

We estimate the coefficients ¢ = {co,...,cx} and fitted
lines X = {XY,X}|i € Q} by minimizing the summed
nonlinearity for each color profile ¢ € 2:

{e, X} = argmm |Q| Z D;(c), (8)
€Q

where || is the number of color profiles used for the com-
putation. The minimization is performed with normalized
color values in the range [0, 1].

For minimization, we put two constraints on the inverse
radiometric response function g, namely monotonicity and
boundary conditions, which are general for any inverse re-
sponse functions. The monotonicity constraint is repre-
sented as dg/OM > 0, and the boundary conditions are
described as g(0) = 0 and g(1) = 1. We use these bound-
ary conditions as a hard constraint by setting ¢cp = 0 and
cx = 1=K ep because g(1) = S ¢, = 1. The
final formulation of the energy minimization becomes

{e, X}fargmm Q) ZQD,;(C)Jr/\;H(

Here, H(-) is the Heaviside step function (H (x) = 1 when
x > 0, and H(z) = 0, otherwise). The derivative dg/0M
are assessed at various ¢ in the range of [0, 1].

Optimization of Eq. (9) is performed with the Nelder-
Mead simplex method [16] due to its simplicity, but other
similar methods could be used as well. We initialize g as a
linear function and X as least square fitted lines from color
profiles.

4. GBR disambiguation using intensity profiles

This section describes the proposed method for resolving
the GBR ambiguity using intensity profiles. By Hayakawa’s
singular value decomposition (SVD) method [10], the irra-
diance I in Eq. (3) can be factorized into a surface compo-
nent S and a lighting component L, up to a linear ambigu-
ity. If albedos are known at 6 different normals or lighting
intensity is known at 6 images, this linear ambiguity can
be reduced to a rotational ambiguity. On the other hand,
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Figure 3. Intensity profiles from a real-world scene. Group 1 and

Group 2 represent two different surface normal groups. Within

each group, the intensity profiles bear the similar shapes.

Yuille et al. [25] showed the original linear ambiguity can
be reduced to a GBR ambiguity by enforcing the integrabil-
ity constraint.

We observe that the intersection of the rotational group
and the GBR transformation group contains only the iden-
tity matrix. Hence, if both constraints from [10] and [25]
can be used, the original linear ambiguity is fully resolved.
To do so, we first apply the integrability constraint to derive
aresult up to the GBR ambiguity. We then resolve the GBR
ambiguity by identifying pixels that have different normals
but with the same albedo.

Suppose we are given pixels that have the same albedo
a but different normals. The GBR transformation should
satisfy ||s;G|| = a, i.e.,

s;Cs! =d?, (10)
where
1 0 "
C=GGT=1[0 1 v , (11)
nov 4?2

and s; is the i-th row vector of S. Let A= ur+ v+
A2 be an auxiliary variable. The constraint in Eq. (10) is
linear in all 4 unknowns {u, v, X, a?}. Therefore, given at
least 4 pixels with different normals but with the common
albedo, the GBR ambiguity can be resolved. Our goal is
to automatically identify these pixels to resolve the GBR
ambiguity.

Surface normal grouping Following Koppal and
Narasimhan’s work [12], we use intensity profiles to cluster
surface normals. As shown in Fig. 3, pixels with the same
surface normal show strong correlation in their intensity
profiles, while pixels with different surface normals become
less correlated. Since we work in the irradiance domain,
instead of using the extrema of the profiles as in [12], we
simply use the correlation of the entire profiles. This allows
us to use fewer images for surface normal clustering. The
Pearson’s correlation r;;; between two intensity profiles I;
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Figure 4. Surface normal grouping (middle) and albedo grouping
(right) on the CAT scene. One of the input images is shown on the
left. Different colors indicate different cluster labels.

and I, is assessed by

Sy (I = Ti) (L — Tr)
(F — l)O'iUil ’

12)

Tisr =

where I, is the mean value of the i-th row vector of matrix
I, and o; is its standard deviation. Using the correlation as
a distance, we perform K-means clustering to partition im-
ages into a set of groups that have similar surface normals.
Hence, by selecting from different groups, we can obtain
points with different normal directions. For this purpose,
we use a large K. An example of the surface normal group-
ing result is shown in Fig. 4 (middle).

Albedo grouping Our albedo grouping aims at identify-
ing pixels with the same albedo. As we have discussed in
Section 3, the RGB ratio of a Lambertian scene point should
be constant (p” : p9 : p®) across images in the irradiance
domain. Hence, we can approximately measure the simi-
larity of pixel albedos by their difference of chromaticity.
To reduce the influence of shadows and noise, we compute
the chromaticity of each pixel from its averaged irradiance
value . The chromaticity is defined as a vector of two el-
ements [I"/(I" + 19+ IY), I9/(I" + I9 + I*)]. We then
cluster pixels in the chromaticity domain to obtain pixels
with similar albedo. Similar to the surface normal group-
ing, we apply K -means clustering using the Euclidean dis-
tance of chromaticity vectors. As a result, we obtain albedo
groups as shown in Fig. 4 (right).

Pixel selection We combine the two grouping results to
automatically select pixels with the same albedo but differ-
ent surface normals.

First, our method selects reliable albedo groups. All the
albedo groups are sorted by their variances, and half of the
groups with larger variances are eliminated. After that, in
each albedo group, we further remove pixels that have a
large distance from the group center in the chromaticity do-
main. Specifically, pixels that have a distance larger than
the average are discarded. The selected groups are split into
subgroups based on the surface normal grouping result. The
resulting subgroups become the groups of pixels with the
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Figure 5. Images of the real-world scene for experiments with the
number of images used.

same albedo and the same surface normal. Since we aim
at finding pixels with the same albedo but different surface
normals, only one pixel from each subgroup is selected.

To implement this pixel selection algorithm, we have
tested two different approaches. One is random selection
from subgroups, and the other is an optimization approach.
The second approach selects pixels that minimize the sum-
mation of the surface normal similarity among selected pix-
els. This optimization problem is discrete and can be ef-
ficiently solved using a belief propagation algorithm [24].
Although the optimization-based method theoretically guar-
antees to select pixels with diverse surface normals, we
find that the random sampling produces as good result as
the optimization-based method when the number of surface
normal groups is high. For this reason, we use the random
sampling method in this work.

Finally, a set of pixels are selected from I? albedo groups
of unknown albedo values {a1,as,...,ar}. From these
pixels, we obtain multiple linear equations Eq. (10) with
unknowns {, v, X, a3, ,a%} to resolve the GBR ambi-
guity by a least square solution.

5. Experiments

We use four real-world scenes, CAT, OWL (courtesy
of Dan Goldman and Steven Seitz'), PILLOW and SHEEP
scenes, to verify our method. The scenes are shown in
Fig. 5. CAT and OWL are radiometrically calibrated, while
PiLLOW and SHEEP are recorded by a Nikon D70 and
Canon 20D, respectively. Both of these cameras have non-
linear radiometric response functions. In this experiment,
we first quantitatively evaluate the radiometric calibration
part. Second, we use the CAT and OWL scenes to assess
the proposed GBR disambiguation method. Finally, we
evaluate the entire pipeline with both radiometric calibra-
tion and GBR disambiguation. We implement our method
using Matlab. The optimization of Eq. (9) can be imple-
mented simply by a Matlab built-in function “fminsearch”.
Throughout our experiments, we set A = 5000, || = 100
(100 color profiles), K = 200 for the surface normal group-
ing, and K = 20 for the albedo grouping in two K -means
stages. With an Intel E6550 (2.33GHz) CPU, the entire pro-
cess took 10 minutes without optimization.

Uhttp://www.cs.washington.edu/education/courses/csep576/05wi/
/projects/project3/project3.htm
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Figure 6. Result of radiometric calibration. The mean curve of
estimated inverse response functions with standard deviation are
shown in comparison with the ground truth.

Radiometric calibration result Using a Nikon D70 and
Canon 20D, we take 50 datasets for testing the radiometric
calibration method. From each dataset, we randomly se-
lect pixels to produce color profiles. The result is shown
in Fig. 6 in comparison with the ground truth obtained by
Mitsunaga and Nayar’s method [15]. The averages of root
mean squared error (RMSE) and disparity (the maximum
difference) are computed from all the 50 datasets. The
statistics show that our method consistently works well with
various scenes and different cameras.

Surface normal and albedo grouping result We show
an example of the grouping result of the SHEEP scene
in Fig. 7. It depicts the accuracy of the grouping result for
the following GBR disambiguation.

GBR disambiguation result We evaluate the proposed
GBR disambiguation method using the CAT and OwWL

Figure 7. Surface normal grouping (middle) and albedo grouping
(right) on the SHEEP scene. One of the input images is shown on
the left. Different colors indicate different cluster labels.

’ Angular error \ CAT \ OowL ‘

Our method Mean 6.15 | 1047
Std. dev. 2.83 | 4.75

Minimum Mean 15.82 | 27.10

entropy [ 1] Std. dev. 6.15 | 6.08

Table 1. GBR disambiguation results. Mean and standard devi-
ation of the angular error of the estimated normal maps. Our
method gives lower errors compared to the minimum entropy
method in these two scenes.

scenes. Fig. 8 and Fig. 9 show the results.”> On the top
row, the color coded normal maps (z, y, 2 components are
linearly mapped in the RGB channel) are shown. On the
bottom row is a depth map integrated from the normal
map by Poisson solver. For a validation, we show the
ground truth obtained by the calibrated photometric stereo
on the left. We compare our method with the minimum en-
tropy method [1]. Because our method uses surface normal
groups in addition to the albedo information, it performs
well in GBR disambiguation. The average angular errors
are summarized in Table 1. Comparing the results between
the CAT and OWL scenes, because of the smoothly varying
albedo of OWL scene, the performances of both our method
and the minimum entropy method degrade.

Self-calibrating photometric stereo result To test the
entire pipeline, we use the PILLOW and SHEEP scenes taken
by a Nikon D70 and Canon 20D, respectively. The results
are shown in Fig. 10 and Fig. 11. In the figures, from left
to right, we show the calibrated result (known lighting and
response function), the result of our method with and with-
out the radiometric calibration step. These results show that
our method produces results that are close to the calibrated
data, although we only use the input images taken under un-
known lighting parameters with an unknown response func-
tion. The importance of radiometric calibration can also be
seen clearly in the side-by-side comparison. Table 2 shows
the quantitative comparison. Our self-calibration method
significantly improves the accuracy. Fig. 12 shows the ren-
dering of the reconstructed surface.

2We recommend viewing the electronic version of this paper for better
visualization.
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Figure 8. GBR disambiguation result for CAT scene. From left to
right, calibrated, our method and minimum entropy method [ 1] are
shown. Top row shows the computed surface normal, and the bot-
tom row shows the integrated depth maps. In the depth maps, the
red color represents nearer, and blue color corresponds to further
depth values. The reference sphere shows the normal directions.

Calibrated Our method

Min-entropy
Figure 9. GBR disambiguation result for OWL scene. From left
to right, calibrated, our method and minimum entropy method [1]
are shown. Top row shows the computed surface normal, and the
bottom row shows the integrated depth maps.

\ Angular error \ PiLLOW \ SHEEP ‘

Our method Mean 5.63 7.30
Std. dev. 3.71 3.02

Without Mean 16.08 20.18
radiometric calib. Std. dev. 7.35 6.86

Table 2. Mean angular error and standard deviation of self-
calibrating photometric stereo result, and the result without radio-
metric calibration.

Normal

Calibrated Our method ~ W/o radiometric calib.
Figure 10. Result of the proposed method for PILLOW scene. From
left to right, calibrated, our method with and without radiometric
calibration.

Normal

Depth

Calibrated Our method W/o radiometric calib.
Figure 11. Result of the proposed method for SHEEP scene. From
left to right, calibrated, our method with and without radiometric
calibration.

Figure 12. The surfaces of CAT and PILLOW scenes.

6. Conclusion and discussion

Auto-calibration for photometric stereo is important for
photometric stereo to be applicable in various settings.
In this paper, we propose a self-calibrating photometric
stereo method that handles both radiometric calibration and
GBR disambiguation. The mixture of these problems is
solved by analyzing color/intensity profiles in the RGB and
irradiance-time domains. We show that radiometric calibra-
tion can be performed from images from a fixed viewpoint
under varying lightings. We also develop a method to au-
tomatically resolve the GBR ambiguity from at least four
pixels with different normals but the same albedo.



Limitations Our radiometric calibration method has a
couple of limitations. First, it cannot work with gray-scale
images and scenes. Second, it cannot handle a certain class
of response functions f where f(z)/f(ax) = const. holds.
This is a special case when the response function is non-
linear while the color profiles remain straight. This class
of function includes f(z) = z",n € R, when boundary
conditions f(0) = 0 and f(1) = 1 is imposed.

To assess the practical limitation of our method, we
tested our method using the database of response functions
(DoRF) [9] with a simulation dataset. We have confirmed
that all the response functions in the database, including
gamma correcting functions, bend the color profiles in the
RGB color space. Among the degenerate case where the re-
sponse function is in the form of f(x) = «™, only the linear
response function f(z) = x is likely dominant in practice.’
Therefore, by setting the initial guess of the response func-
tion as a linear function, our method works well for a wide
variety of real-world camera response functions.
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