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Abstract

Traditional image stitching using parametric transforms
such as homography, only produces perceptually correct
composites for planar scenes or parallax free camera mo-
tion between source frames. This limits mosaicing to source
images taken from the same physical location. In this pa-
per, we introduce a smoothly varying affine stitching field
which is flexible enough to handle parallax while retaining
the good extrapolation and occlusion handling properties
of parametric transforms. Our algorithm which jointly esti-
mates both the stitching field and correspondence, permits
the stitching of general motion source images, provided the
scenes do not contain abrupt protrusions.

1. Introduction
Image stitching has long been of interest in graphics and

vision. Its primary goal is the integration of multiple images
into a single seamless mosaic. This serves many purposes,
such as increasing the effective field of view, motion sum-
marization and clean plate photography. Typically, stitching
relies on an underlying transform which warps pixels from
one coordinate frame to another. As the transformation
must ensure perceptually accurate alignment of large (of-
ten quarter image width or greater) non-overlapping image
regions, it must be robust to large view point changes and
be able to generalize (interpolate and extrapolate) the mo-
tion over significant occlusion. To handle uncontrolled out-
door environments, the transform must also accommodate
illumination changes and independent motion. For robust
warping, mosaicing algorithms have traditionally sought to
parameterize the warping field using a sparse set of global
transformation parameters, such as the 3×3 affine or ho-
mographic matrix. This sparse parametrization ensures ro-
bustness at the expense of flexibility and is only accurate
for a limited set of scenes and motions. For example, the
commonly used homographic transforms are only accurate
for planar scenes or parallax free camera motion between
source frames i.e. the photographer’s physical location must

be fixed and only rotational motion is permitted.
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Figure 1. A girl passing the time by playing chess with herself, an
example of our image stitching algorithm.

Dornaika et al. [8] highlighted that ideally, an image
stitching algorithm would allow for both general motion and
scene structure. As affine and homographic stitching can
be considered a special case of a 3-D world’s re-projection,
a number of works [8, 21, 16] have proposed combining
image stitching with 3-D reconstruction to enable the han-
dling of parallax in general motion source images. How-
ever, using pre-computed 3-D points has a number of draw-
backs. Firstly, 3-D reconstruction is only defined on the
overlapping sections of the source image, making it diffi-
cult to integrate the non-overlapping regions, which is the
primary objective of image stitching. Secondly, as noted
by Liu et al. [16], the 3-D reconstruction pipeline is brittle,
with its main components, accurate camera pose recovery
and outlier free matching, still being active research issues.
Thirdly, camera pose computation deteriorates if the motion
contains too strong a rotational element or if the overlapping
image regions are of inadequate size, both of which occur
frequently in image stitching.

To achieve flexibility, we look to the 2D non-rigid warp-
ing approaches such as thin plate spline [4, 23], as-rigid-
as-possible warping [13] and motion coherence [19]. They
eschew the sparsity of parametric warping in favor of con-
sidering warping as a general matching problem with a
smoothness constraint. This provides the flexibility needed
to handle most motion types but at the expense of motion
generalization over occluded regions. Hence, while warp-



ing algorithms may be used as a form of interpolation, they
are seldom directly employed to solve traditional two view
stitching problems. In this paper, we seek to adapt the
warping framework to take advantage of the fact that many
scenes can be modeled as having smoothly varying depth.
This permits a general stitching algorithm which does not
require an explicit 3-D reconstruction.

Our formulation is based upon the affine transform. A
global affine transformation defines a set of shear, rota-
tion, scaling and translational parameters, which preserve
collinearity and the ratios of distances along a line. The
general shape preservation property of the affine transform
means that even when image pairs are not strictly related by
a global affine matrix, it can still capture the gist of the cam-
era motion induced deformation, such as whether the scene
is translating upwards or side ways. Thus, provided motion
discontinuities are not too extreme, a global affine transfor-
mation can be considered a parametric warping [12] which
approximates the motion field and is utilized in a number of
applications as a first approximation [26, 11]. This suggests
that we can relax the affine constraint while retaining much
of its strong motion generalization properties.

In this paper, we replace the global affine transforma-
tion with a smoothly varying affine stitching field which is
defined over the entire coordinate frame. Every point has
an associated affine parameter which is biased towards a
pre-computed global affine transform and smoothness is en-
forced on the deviation of each affine parameters from the
global affine. This model has two major advantages. Firstly,
it is flexible enough to handle most kinds of motions, pro-
vided the scene contains no major protrusions Secondly,
affine parameters can generalize the motion of a image re-
gion. Hence, a region of rather un-smooth 2D motion flow
(such as a strong sheer, or forward translation) can become
smooth if described using an affine stitching field, since all
pixels in that region can be assigned a single, constant affine
parameter. This makes the affine stitching field very smooth
and thus, easily extrapolated over the non-overlapping re-
gions.

To robustly compute the desired affine stitching field
over large displacements, illumination change and occlu-
sion noise, we utilize local view invariant feature descrip-
tors like SIFT [17]. Unfortunately, dense feature descrip-
tors such as those used in SIFT flow [15], introduce a lot of
localization error as neighboring pixels are likely to share
similar feature descriptors, thus making accurate dense de-
scriptor based matching difficult. Instead, we rely on a
sparse set of corner features (with associated SIFT descrip-
tors) to compute the stitching field, which has an additional
advantage in terms of computation time. While one can ex-
trapolate a stitching field from pre-computed point matches,
this is extremely vulnerable to outlier matches and a vary-
ing stitching field does not permit RANSAC based outlier

rejection. Instead, we observe that a good stitching field can
help validate existing correspondence and determine addi-
tional ones. These correspondences can in turn refine the
stitching field. We exploit the inter-connectedness of these
problems by jointly estimating both the matching and the
stitching field. This prevents outlier matches, provides sig-
nificantly more matches and yields a better stitching field.

To summarize our contribution:
1) We introduce a flexible image stitching algorithm that

retains much of the motion generalization properties associ-
ated with global parametric transforms like affine/ homog-
raphy. This permits the handling of general scenes and mo-
tions provided there are no abrupt protrusions. While our
results do not always conform to the ground truth, it pro-
vides a good approximate which enables the creation of a
perceptually correct composite.

2) We explore a range of applications made possible by
this flexibility. These include novel scene generation illus-
trated in fig 1, computation of point correspondence and
mosaicing of panoramas from translational motion.

1.1. Related Works

Our stitching field is related to the affinely over-
parameterized optical flow algorithm of Tal et al. [20].
However, it is unclear how the framework of [20] can be
adapted to the utilization of sparse high dimensional fea-
tures and a bias towards a pre-defined affine. Instead, we
utilize the motion coherence framework of Yuille et al. [27]
and Myronenko et al. [19] to fit the affine stitching field.

Our work is also related to the 3-D reconstruction
based image stitching methods mentioned in the introduc-
tion. These techniques have difficulty integrating the non-
overlapping image regions. While this is not important for
applications like Liu et al.’s [16] work on 3-D video stabi-
lization, it is the central issue in forming large panoramas.
A simple solution is to utilize an additional image [8], so
that regions viewed by at least two images increase. How-
ever, this approach also increases the non-overlapping re-
gions which cannot be mosaiced. An alternative is offered
by Qi et.al. [21], where the 3-D reconstruction is used to
generate virtual cameras from which strips are cut to en-
sure a smooth transition between the non-overlapping re-
gions. This averages the error over the mosaic rather than
attempting to align the images and is unsatisfactory because
the error is incurred in the constrained overlapping region,
rather than the unconstrained non-overlapping region. The
lack of an underlying warping field also makes handling of
occlusions and illumination change difficult and limits the
algorithms applicability to other image editing task.

There are also works which seek to attain a perceptually
accurate large field of view image through inputs other than
conventional image stills. An interesting work is that of
Kopf et al. [14] who generated virtual cameras from a series
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Figure 2. The affine stitching field transfers the base image to the target. The color coded deviation of each point’s affine parameters
from the global affine is overlaid on the base image. Affine parameters are divided into 2 groups according to the axis they operate on.
Parameters in each group are assigned to one RGB color channel. The deviation from the global affine is proportional to color brightness.
We present both our method and a naive method where the stitching field is computed by averaging the affine parameters computed form
correspondences within a window. Observe that the naive method’s stitching field is strongly biased towards regions where there are many
correspondences. This makes it difficult to extrapolate the field to occluded regions such as the girl. Our algorithm can create a smooth
field (seen in the color transitions) over the right angled corner, and has better extrapolation ability.

of “bubbles” (360o panoramas), thus creating a long street
view. Carrol et al. [6] introduced a warping which enables
the un-distortion of a very wide angled image if the user
defines a number of straight lines. For video sequences,
Rav-Acha et al. [22] showed it is possible to leverage on
the trackability and redundancy present in closely spaced
video frames to incrementally stitch a large mosaic from
general motion. However, it does not extend to the large
displacement two view stitching considered in this paper.

There are also a large number of works which seek
to refine conventional parametric image stitching. Inter-
ested readers can refer to the comprehensive tutorial by
Szeliski [24] for an overview of such image stitching and
blending techniques.

Finally, the field of image stitching is also related to
various large displacement matching works such as those
by Bhat et al. [3] and Fraundorfer et al. [10] and Brox et
al. [25]. However, the focus of these works is on matching,
rather than interpolation and extrapolation and as such, are
not directly applicable to the image stitching domain.

2. Our Approach

A naive method of computing an affine stitching field
would be to compute local affine parameters from SIFT cor-
respondences within a sliding window. These affine param-
eters could then be averaged to give a smooth, dense affine
stitching field with the parameters for non-overlapping re-
gions obtained by extrapolation. This method produce a
good, smooth stitching field in regions where the point cor-
respondence is fairly plentiful. However, the performance
declines significantly for regions where there are few/ no
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Figure 3. System overview. Point correspondence is used to obtain
a global affine which our relaxes to form a smooth affine stitching
field. The images are warped together and their overlapping re-
gions blended to form a composite.

point correspondences and the extrapolation is generally
poor. The reason is as follows. For any point (or small
patch), there are many possible affines that can approxi-
mate its motion. Pre-computing an affine from correspon-
dence forces us to choose one of the possibilities. While this
choice may be locally optimal, it may not extrapolate well
over the rest of the scene. The result is an affine stitching
field that fits the regions of dense correspondence very well
but does not give due weight to the sparser correspondences
from the outlying regions. This problem is illustrated in fig
2, where even though we use a fairly large window (which
helps avoid local over-fitting) with a length of a quarter im-
age width, the affine stitching field computed still has diffi-
culty extrapolating over regions with few correspondence.

In contrast, our problem is formulated as finding the



smoothest stitching field which can align the feature points
of both images. This avoids a hard pre-assignment of the
affine parameters, while the choice of stitching field carries
within it an implicit extrapolation. An overview of our sys-
tem is given in figure 3.

Our formulation’s primary constraint consist of two sets
of unmatched SIFT feature points. We denote the M fea-
tures from the first, base image as b0i, while the N fea-
tures from the second, target image, are denoted as t0j .
The first two entries of the b0i, t0j vectors represent im-
age coordinates, with the remaining entries containing SIFT
feature descriptors (This concatenation is done for nota-
tional simplicity and the necessary associated normaliza-
tion is discussed in section 3). The stitching of the b0i ’s
to t0j ’s is defined using a continuous affine stitching field
v(z2×1) : R2 → R6, which represents the deviation from a
global affine aglobal. Mathematically, this is expressed as

(∆ai)6×1 = v
([
b0i(1);b0i(2)

])
, (1)

where ∆ai is the deviation of feature i’s affine ai term from
the global affine, given by ai = aglobal + ∆ai.

We use bi to represent the stitched feature points. bi
value depends only on the affine ai term associated with
the stitching field v(.) and their original position b0i. This
relationship can be expressed by the affine transform

bi =

 ai(1) ai(2)

ai(4) ai(5)
02×S

0S×2 IS×S

b0i +

 ai(3)

ai(6)

0S×1

 . (2)

To facilitate easy reference to these affine parameters, we
also define matrices

AM×6 = [a1, ...,aM ]T ,∆AM×6 = [∆a1, ...,∆aM ]T .

We relate the base point set’s alignment to the target point
set, using the conditional probability based on a robust
gaussian mixture

P (t01:N |b1:M ) =

N∏
j=1

((
M∑
i=1

g(t0j − bi, σt)

)
+ 2κπσ2

t

)
,

(3)

where g(z, σ) = e−
‖z‖2

2σ2 is a gaussian function and κ con-
trols the strength of a uniform function which thickens the
gaussian mixtures tails. κ is usually set to 0.5.

Apart from SIFT features, we also desire to incorporate
a number of soft constraints. As mentioned earlier, we as-
sume that the stitching field is a relaxation of a single global
affine. Hence, we impose a smoothness constraint on the
deviation of each points affine parameters from the global
affine. We incorporate these soft constraints into a smooth-
ing regularization term∫

R2

|v′(ω)|2

g′(ω)
dω, (4)

where v′(ω) denotes the fourier transform of the contin-
uous stitching field v(.) and g′(ω) represents the fourier
transform of a gaussian with spatial distribution γ. The

regularization term biases the affine stitching field towards
the global affine and ensures smooth transition between the
constrained stitching field in the overlapping regions and the
extrapolated stitching field in the occluded regions. While
A is a discrete quantity and the stitching field v(.) is contin-
uous, the regularization term can be re-expressed in terms of
A by choosing the smoothest stitching field which satisfies
eqn (1). This yields

Ψ(A) = min
v′(ω)

(∫
R2

|v′(ω)|2

g′(ω)
dω

)
, (5)

We combine the negative log of eqn (3) with the regular-
ization term in eqn (5) and a λ weighting term, to form a
single cost function,

E(A) =−
N∑

j=1

log

((
M∑
i=1

g(t0j − bi, σt)

)
+ 2κπσ2

t

)
+ λΨ(A)

(6)

which can then be minimized with respect to the variables
in A. Our minimization employs an EM style formulation,
successfully used in [19].

2.1. Minimization

We follow a minimization procedure which computes an
Ak+1, using the M × 6 linear equations defined by Ak in
eqn (8). Compared to Ak, Ak+1 lowers the overall cost cost
defined in eqn (6). The process is iterated until convergence.
We define

φij(bi, t0j) = g(t0j − bi, σt),

φij(A, t0j) =
φij(bi, t0j)∑

l φlj(bl, t0j) + 2κπσ2
t

.
(7)

Note that the second function’s argument is given as A be-
cause, as can be seen from eqn (2), the bi are base features
after being warped by A and are wholly dependent on the
A.

Using Jensen’s inequality, we can write

E(Ak+1)− E(Ak)

≤−
N∑

j=1

M∑
i=1

φij(A
k, t0j)log

φij(b
k+1
i , t0j)

φij(bk
i , t0j)

+ λ
(

Ψ(Ak+1)−Ψ(Ak)
)

=∆E(Ak+1,Ak).

From the above, we know ∆E(Ak,Ak) = 0. Hence,
an Ak+1 which minimizes ∆E(Ak+1,Ak) will ensure
E(Ak+1) ≤ E(Ak).
Dropping all the terms in ∆E(Ak+1,Ak) which are inde-
pendent of Ak+1, we obtain a simplified cost function

Q =
1

2

N∑
j=1

M∑
i=1

φij(A
k, t0j)

∥∥t0j − bk+1
i

∥∥2
σ2
t

+λΨ(Ak+1).



Using a proof similar to that in Myronenko et al.[19], we
show in the appendix that the regularization term Ψ(A)
has the simplified form Ψ(A) = tr(∆ATG−1∆A) where
G is a M × M matrix, whose elements are given by
G(i, j) = g(b0i(1:2) − b0j(1:2), γ). Substitute this defi-
nition of Ψ(A) intoQ, take partial differentiation ofQ with
respect to Ak+1 and post multiply G throughout, we have
δQ

δAk+1
=
[
c1 c2 . . . cM

]
+ 2λ

(
∆Ak+1

)T
G−1

= C + 2λ
(
∆Ak+1

)T
G−1 = 06×M

=>CG + 2λ
(
∆Ak+1

)T
= 06×M ,

(8)

ci =

N∑
j=1

φij(A
k, t0j)

σ2
t

D(bk+1
i − t0j)V(b0i).

D(.),V(.) are simultaneous truncation and tiling operators.
They re-arrange only the first two entries of an input vector
z (where z must have a length greater or equal to 2) to form
the respective output matrices

D(z)6×6 =

[
z(1)I3×3 03×3

03×3 z(2)I3×3

]
V(z)6×1 =

[
z(1) z(2) 1 z(1) z(2) 1

]T
From the definition of A in (2), we know that bk+1

i can
be expressed as a linear combination of the entries of Ak+1.
Hence, eqn (8) produces M × 6 linear equations which can
be used to estimate Ak+1. Ak+1 is used to estimate Ak+2

and the process is repeated until convergence.
After convergence, the continuous stitching field v(.) at

any point z2×1 can be obtained from A using a weighted
sum of gaussian given by

WM×6 = [w1, ...wM ]
T

= G+∆A,

v(z2×1) =

M∑
i=1

wig(z−
[
b0i(1) b0i(2)

]T
, γ),

(9)

where G+ is the pseudo-inverse of G and the 6 × 1,wi

vectors can be considered weights for the gaussians. The
detailed proof is given in the appendix.

3. Implementation
We now discuss our system implementation. A process

overview is given in fig 3, with stitching field computation
algorithmized in fig 4. In the formulation section, we have a
global affine, aglobal acting as a regularization term. aglobal
is computed from SIFT correspondences using RANSAC
[9] for outliers removal. As aglobal’s regularization role lies
in ensuring a smoother stitching field, its precise value is
not important. All the ai vectors in A are initially set to
aglobal. The affine stitching field is then computed by re-
peatedly minimizing the cost in eqn (6) with increasingly

Input: Base image features bi, target image features
tj , global affine matrix aglobal

while σt above threshold do
while No convergence do

Use eqn (7) to evaluate φij(bki , t0j) from Ak;
Use eqn (8) to determine Ak+1 from
φij(b

k
i , t0j)

end
Anneal σt = ασt, where α < 1.

end
Output: Aconverged

Figure 4. Algorithm to compute stitching field.

smaller values of σt. Each step in this annealing process
uses the previously calculated stitching field is as an ini-
tialization. We begin with σt = 1 and decrement it by a
factor of 0.97, until σt = 0.1. The progressively smaller σt
values increase the penalty for deviation between the target
and base point sets, forcing the stitching field to evolve un-
til the base point coordinates register onto the target points,
resulting in a “match”.Using an i7 computer running mat-
lab, the algorithm can typically compute the registration of
1200 SIFT features in 8 minutes.

For notational simplicity, SIFT descriptors and point co-
ordinates are condensed into a single vector. This implies
a need for normalization. The point coordinates for the tar-
get and base points are normalized to have zero mean, unit
variance, thus making the remaining parameter settings in-
variant to image size. We normalize the SIFT descriptors
to have magnitudes of 10σt, which gives good empirical re-
sults. The smoothing weight λ and outlier handling term
κ are assigned values of 10, 0.5 respectively. The γ term
which penalizes un-smooth flow, is set to 1. Finally, we
blend the images into a single mosaic, using the poisson
blending with optimal seam finding algorithm of [7].

4. Analysis
The computed smooth affine stitching field is a “sparse”

representation of the true warping function and errors will
be incurred by smoothing over depth boundaries and gener-
alization from a small set of feature points. In figure 5, we
use two simulated scenes. The first is a simple “V” scene,
while the second contains significant depth discontinuities.
The scenes are projected onto 500× 500 pixel images. Our
computed warping has an avergae error of 1.92, 4.57 pix-
els. This is small, considering we generalized the motion of
0.25 megapixels using 625 feature points, a ratio of 1 : 400.

In fig 6, we provide a qualitative error analysis. The
stitched images are overlayed. In the overlapping region,
the green color channel is from the base image while the
red and blue channels come from the target image. This



allows a visualization of alignment errors. While our algo-
rithm incurs some errors along depth boundaries, they can
be removed by blending.

Base Model Target Model

Mean flow: 26.9 pixels Mean error: 1.92 pixels

Mean flow: 70.87 pixels Mean error: 4.57 pixels
Figure 5. Quantitative analysis of our algorithm’s motion gener-
alization ability. The camera rotates 0.3 radians about the object.
Using 625 uniformly distributed, unique features, we generalize
the motion of a 500× 500 image (0.25 megapixels), a 1:400 ratio.

Input Images Overlay After Blending

Ours

Homography

Figure 6. Results before and after poisson blending. For the pre-
blended images, the overlapping regions take the green color chan-
nel from the base image and the red, blue channels from the target
image. This enables visualization of alignment errors. Our algo-
rithm incurs some errors along the depth boundaries. However,
after blending, the results are perceptually accurate. The homo-
graphic mosaicing, incurs much larger errors and even after apply-
ing the same blending, clear artifacts remain.

5. Applications
Our algorithm’s flexibility means that it can stitch im-

ages even when the photographer does not maintain a fixed
position. This opens up a range of different possibilities.

5.1. Re-shoot

Bae et al.[2], noted that if the photographer has moved
away from the original location, it is difficult to recover
the exact view point. Our algorithm’s good motion gen-
eralization and flexible stitching capability mean we can
“re-shoot” a scene to incorporate information from different
time instances. Observe that image editing using “re-shoot”

differs from a “cut and paste” method of overlaying an ob-
ject onto a background image. In “cut and paste”, the over-
lay must be a discrete object such as a man or a car, with no
attached background. As our stitching algorithm automat-
ically warps the appended region to fit smoothly with the
target image, “re-shooting” allows the overlay of an entire
region, including the complex background and the subjects’
interactions with it.

Image Integration

(a)

(b)

(c)

(d)

Summer Autumn

Past (1920) Present

Figure 7. “Re-shoot” permits the integration of image pairs to cre-
ate novel composites where the subject is interacting with the en-
vironment. This is not possible using conventional ”cut and paste”
image fusing methodology. (a) A girl passing the time by playing
chess with herself. (b) Two people alternating as photographers
to obtain a group photo. (c) The changing seasons at the famous
Kiyomizu temple in Japan. (d) The passage of time at the Arch-
bishop’s palace in Prague.

In the first two scenes of fig 7, we insert a person into
an image where he/she was not originally present and con-
versely, remove a person from the image. This allows inter-
esting compositions such as a girl playing chess with her-
self in a cafe and permits two people to alternate as pho-
tographers to obtain a group photo. The following two
scenes of fig 7 test our algorithm’s limit by using internet
images. These are much more challenging because pho-
tometric changes affect the SIFT feature invariance our al-



gorithm depends on. However, it permits more dramatic
effects such as integration of summer time vista with the
spectacular autumn foliage at Kiyomizu temple in Japan, as
well as an image of a young couple walking from Prague’s
present into its past. We believe that our algorithm can be
adapted to permit changes in the SIFT feature which would
significantly improve its performance on internet images.

Technical discussion: “Re-shoot” is more challenging
than panorama formation as the available blending region is
narrow and the amount of occlusion typically very large. To
ensure image consistency, we normalize the image colors.
Poisson blending with optimal cut is employed [7] and fol-
lowed by an additional alpha blending to merge the colors.
It is carried out on a 25 pixel wide boundary along a user
defined transfer region. For the shots using internet images,
the blending boundary is set to be 50 pixels wide to accom-
modate the photometric variations and color normalization
is discarded. In the Prague scene, the global affine was not
pre-computed (due to a shortage of reliable matches) but
set to an identity matrix. A more sophisticated blending for
“re-shoot” can by obtained from [1].

5.2. Panoramic stitching

Our algorithm can be used for panorama creation. Its
ability to handle general motion allows image stitching
from un-conventional sequences, such as a series of images
taken from different windows of a high-rise flat. As most
windows are set back from the facade, this is not possible
with homographic mosaicing [5] which requires a large un-
occluded rotational field of view from a single window. Re-
sults are shown in fig 8. Observe that many of the views
have only limited overlap, making camera pose recovery
and hence mosaicing via 3-D reconstruction difficult.

5.3. Matching

Our algorithm can serve as a matcher across two views
that can be related by a smoothly varying affine field (it will
not match independent motion). As it matches features as
a set, rather than individually, there is reduced dependency
on feature descriptor uniqueness. In fig 9 we show that ap-
plying our algorithm with traditional SIFT descriptors [17],
we can obtain 40% more matches. This is more than using
a nearest neighbor matcher with more sophisticated A-SIFT
[18] descriptors.

6. Conclusion
We present an image stitching algorithm based on a

smoothly varying affine field. It is significantly more tol-
erant to parallax than traditional homographic stitching but
retains much of homographies ability to generalize motion
over occlusion. Its flexibility enables integration of views
taken from different physical locations, permitting a num-
ber of interesting applications like panorama creation from

Ours

AutoStitch

Input
Images

(a)

(b)

(c)

(d)

Close-up View

AutoStitch

Ours

Input Images

Ground-truth

(a)

(b)

(c)

Figure 8. Results of panoramic stitching. Input images in (a) are
taken from a series of windows. Our mosaic in (b) is perceptually
accurate while homographic mosaicing using AutoStitch [5] in (c)
has difficulty merging the fore-ground buildings.

a translating camera or integration of images taken at differ-
ent times. It can also accommodate other heuristics such as
requiring straight lines to warp to straight lines, which may
be considered in future work. Our algorithm’s primary lim-
itation is the violation of affine coherence at depth bound-
aries. While our results show these errors are often small
enough to be blended over, explicit detection and handling
would be better. In this regard, our results provide an excel-
lent starting point for further refinement.
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No. of matches: Ours 360 A-SIFT 257    SIFT 215

No. of matches: Ours 386 A-SIFT 318    SIFT 270

Figure 9. We show the results obtained by using our algorithm
as a matcher, compared against conventional nearest neighbor
SIFT [17] and A-SIFT [18] feature matching. Although we use
traditional SIFT [17] descriptors, we can obtain more matches
than applying nearest neighbor matching to the more sophisticated
A-SIFT descriptor. The above figures show that the additional
matches do not come at the expense of accuracy and the match-
ing is stable to significant occlusion.
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7. Appendix A: Affine Coherence

This appendix deals with how the smoothness function can be simplified into a more computationally tractable form.
At the minima, the derivative of the energy term in (6) with respect to the stitching field v′(.), must be zero. Hence,

utilizing the fourier transform relation, (∆ai)6×1 = v(µi) =
∫
R2 v

′(ω)e2πι<µi,ω>dω, where µi = [ b0i(1) b0i(2) ]T , we
obtain the constraint

δE(v′)

δv′(z)
= 06×1,∀z ∈ R2

=>−
N∑
j=1

M∑
i=1

(
g(t0j − bi, σt)

σ2
t

)
diag (D(bi − t0j)V(b0i))

∫
R2

δv′(ω)

δv′(z)
e2πι<µi,ω>dω

M∑
i=1

g(t0j − bi, σt) + 2κπσ2
t

+ λ

∫
R2

δ

δv′(z)

|v′(ω)|2

g′(ω)
dω = 06×1

=>−
N∑
j=1

M∑
i=1

(
g(t0j − bi, σt)

σ2
t

)
diag (D(bi − t0j)V(b0i)) e

2πι<µi,z>

M∑
i=1

g(t0j − bi, σt) + 2κπσ2
t

+ 2λ
v′(−z)

g′(z)
= 06×1

(10)

D(.),V(.) are simultaneous truncation and tiling operators. They re-arrange only the first two entries of an input vector z
(where z must have a length greater or equal to 2) to respectively form the 6× 6 and 6× 1 output matrices

D(z)6×6 =

[
z(1)I3×3 03×3

03×3 z(2)I3×3

]
V(z)6×1 =

[
z(1) z(2) 1 z(1) z(2) 1

]T
diag(.) is a diagonalization operator which converts a k dimensional vector z into a diagonal matrix, such that

diag(zk×1) =


z(1) 0 · · · 0
0 z(2) · · · 0
...

...
. . .

...
0 0 · · · z(k)


k×k

.

Simplifying eqn (10), we obtain

−2λ

M∑
i=1

wie
2πι<µi,z> + 2λ

v′(−z)

g′(z)
= 0

where the six dimensional vectors wi act as placeholders for the more complicated terms in (10).
Substituting z with −z into the preceding equation and making some minor rearrangements, we have

v′(z) = g′(−z)

M∑
i=1

wie
−2πι<µi,z>. (11)

where the six dimensional vectors, wi, can be considered as weights which parameterize the stitching field.
Using the inverse Fourier transform relation∫

R2

wT
i wjg

′(z)e+2πι<µj−µi,z>dz = wT
i wjg(µj − µi, γ),



and eqn (11), we can rewrite the regularization term of eqn (6) as

Ψ(A) =

∫
R2

(v′(z))T (v′(z))∗

g′(z)
dz

=

∫
R2

g′(z)2
∑M
i=1

∑M
j=1 w

T
i wje

+2πι<µj−µi,z>

g′(z)
dz

=

M∑
i=1

M∑
j=1

∫
R2

wT
i wjg

′(z)e+2πι<µj−µi,z>dz

= tr(WTGW),

(12)

where

WM×6 = [w1, ...,wM ]T ,

G(i, j) = g(µi − µj , γ).

Taking the inverse Fourier transform of eqn (11), we obtain

v(z) = g(z, γ) ∗
M∑
i=1

wiδ(z− µi) =

M∑
i=1

wig(z− µi, γ). (13)

As ∆aj = v(µj),
∆A = GW. (14)

Substituting eqn (14) into (12), we see that the regularization term Ψ(A), has the simplified form used in the main body

Ψ(A) = tr(WTGW) = tr(∆ATG−1∆A). (15)

It can also be seen from eqn (14) that the stitching field v(.) can be defined in terms of A. This is done by using the
matrices ∆A,G to define define the weighting matrix W via,

W = G+∆A. (16)

This allows the definition of the stitching field at any point z2×1 using equation (13).



8. Appendix B: Additional Results
8.1. Panorama Creation

It is possible to stitch together fairly large panoramas using our algorithm. In figure 10, we show an extended version of
the panorama used in the main body.

Figure 10. Long panoramic view

8.2. Protrusion Handling

While strong depth deviation is our algorithm’s weak point, it is often possible for the post-blending results to be visually
pleasing. This is illustrated in figure 11, where the tree is quite far in front than the store.

8.3. Re-Shoot

“Re-shoot” is quite stable to changes in the environment. In figure 12, we integrate images taken a few months apart,
both before and after the workspace was occupied. Observe that there have been many modifications to the equipment in the
room after it was occupied by a new worker. To re-assure the readers that the introductory image does not consist of a pure
rotation, we also include the result of stitching the images using auto-stitch in fig 13.

9. Comparison with other warping techniques
Finally, we compare our results with some of those obtained using other warping techniques. In figure 14, we compare

our affine based relaxation of a global affine, to a motion coherence based relaxation. Observe that our approach gives
better extrapolation ability. In figure 15, we compare against SIFT flow [15] and large displacement optical flow [25], two
recently developed dense matching techniques. These algorithms are not designed for image stitching and do not give good
extrapolation.



Figure 11. While we incur clear errors, the mixture of our warping and a blending algorithm could still recover a somewhat pleasing mosiac
from an image pair where the frontal tree represents a major protrusion.

Figure 12. Combing images taken a few months apart, before and after a office worker occupied his work station.

Figure 13. Auto-stitch result on the introductory image.



Figure 14. Left: Relaxing a global affine using normal coherence. Right: Our affine coherence relaxation.

Warped image 2

SIFT flow [15] Large displacement flow [25] Our Sparse SIFT warping
Figure 15. Computing the warping using dense SIFT features in the SIFT flow algorithm of [15], large displacement optical flow [25] and
our algorithm. Our results are perceptually more pleasing and easier to mosaic. Our warping also extrapolates the motion for occluded
regions. These results are for the image pair shown in figure 1


