Efficient Colorization of Large-scale Point Cloud using Multi-pass Z-ordering

Sunyoung Cho?, Jizhou Yan', Yasuyuki Matsushita’, and Hyeran Byun®

Yonsei University®, Microsoft Research Asia'

Abstract

We present an efficient colorization method for a large
scale point cloud using multi-view images. To address the
practical issues of noisy camera parameters and color in-
consistencies across multi-view images, our method takes
an optimization approach for achieving visually pleasing
point cloud colorization. We introduce a multi-pass Z-
ordering technique that efficiently defines a graph structure
to a large-scale and un-ordered set of 3D points, and use
the graph structure for optimizing the point colors to be as-
signed. Our technique is useful for defining minimal but
sufficient connectivities among 3D points so that the opti-
mization can exploit the sparsity for efficiently solving the
problem. We demonstrate the effectiveness of our method
using synthetic datasets and a large-scale real-world data
in comparison with other graph construction techniques.

1. Introduction

This paper addresses the issue of assigning colors to a
large-scale 3D point data from multi-view images as illus-
trated in Fig. 1. With the recent developments in various
3D sensing modalities, it is becoming feasible to obtain a
large-scale 3D point data. For the tasks of 3D visualiza-
tion or segmentation of a 3D point cloud, assigning color
appearances to the points is an important process. This is
a trivial problem if we neglect the camera calibration error,
inconsistent appearances across views and occlusions, be-
cause simply projecting 3D points to the image coordinates
of any of the views would accomplish the goal. However,
in reality, camera calibration is not exact, and appearances
may vary across views due to view-dependent reflectances
or exposure variations and projection errors. In addition,
the massive 3D point data that can be easily obtained by
modern devices renders another challenge to this problem

Part of this work has been done while the first and second authors are
visiting MSRA as research interns.

(a) Input (b) Output

. v
Point cloud ~—

Colorized

Point cloud i :
Multi-view images

(d) Mean-based result (e) Our result

i N
(c) Closest-based result

Figure 1: First row shows our problem setting. (a) Our input
is point cloud and multi-view images, (b) Output is a col-
orized point cloud. The second row is an example showing
two problems of 3D point cloud colorization. (c) Coloriza-
tion using combination of closest views, (d) Mean color of
all views, (e) Our colorization. There are color inconsisten-
cy in (d) between distinct view images and blurry boundary
from projection error in (e).

in terms of computational tractability.

In this paper, we present an efficient 3D point cloud col-
orization method that takes a large-scale 3D point cloud and
corresponding multi-view images as input, which may con-
tain calibration error and inconsistent view-dependent ap-
pearances. Our method casts the color assignment problem
as an optimization using a sparse graph structure, which ef-
fectively ensures smooth and faithful color assignments. At
the heart of the proposed method, we introduce a multi-
pass Z-ordering technique for fast creation of a sparse
and connected graph structure from a set of unordered 3D
points on the unstructured grid. The proposed multi-pass
Z-ordering method is advantageous over a conventional k-

nearest neighbor (k-NN) graph construction, because it en-
sures the connected graph as output, which is crucial for the
colorization. It is also computationally efficient in compar-
ison with the Delaunay triangulation-based mesh creation
technique.

We conduct quantitative and qualitative evaluation of the
proposed method using synthetic data that contains camera
calibration error and multi-view color inconsistencies, and
compare our method with other graph generation methods,
such as k-NN and Delaunay triangulation. We also show
the result of our method applied to a large-scale real-world
outdoor data.

2. Related Work

Point-based surface representation has been shown ef-
fective for large-scale or complex geometric data as it nat-
urally avoids the expensive computation time for generat-
ing consistent triangular meshes. The output of our point
colorization method can be used for point-based render-
ing [22, 28, 24], and also for segmentation of a point
cloud [25, 2].

One of the major challenges in assigning colors to the
3D point cloud is to reduce the color discrepancy among
multi-view images. To deal with this issue, color correc-
tion methods have been studied in multi-view image and
video stitching, which is the process of correcting the color
differences between neighboring views that arise due to d-
ifferent exposure levels and viewing angles. Among them,
exposure compensation [17, 5, 27] has studied color balanc-
ing in the multi-view stitching problem, and color transfer
techniques [21, 26, 18] have been developed for achiev-
ing the similar goal with a more emphasis on establish-
ing the mapping function. Kim and Pollefeys [18] apply
their color transfer algorithm to stereo sequences, and its
resulting radiometrically aligned images are used for gen-
erating a texture-mapped 3D model without color inconsis-
tency. They propose a likelihood approximation method of
the brightness transfer function in the joint histogram be-
tween two overlapped images. Bannai et al. [5] also apply
their color correction method for multiple texture maps, and
its corrected texture maps are used for constructing the con-
sistent 3D model. Their method first constructs a graph of
texture map patches, and spreads the color matching error
across all multi-view images using unconstrained nonlinear
optimization. Our work also reduces the color inconsisten-
cy in multi-view images; however, we perform the color fu-
sion using all multi-view observations simultaneously with-
out setting any particular reference image.

There are some color blending approaches for assign-
ing colors given an uncolorized 3D mesh and scan images.
Chuang et al. [9] define the Laplace-Beltrami operator us-
ing restrictions of 3D functions to the surface. Their opera-
tor allows an efficient multi-resolution hierarchy for solving

the Poisson equation, and produces the seamless coloriza-
tion result. Li ef al. [19] reconstruct the texture of 3D sur-
face using a method of [0, 7] that recovers illumination as
well as reflectance from a single image based on shading
cues. Most of these methods mainly focus on colorization
of small 3D objects. Unlike them, our goal is to develop
a scalable colorization technique for a large-scale 3D point
cloud. In this context, our work is closely related to Shan et
al. [23], which estimates albedo and normal for each ver-
tex in the triangle mesh given a city-scale 3D model. Their
method optimizes an energy function that consists of ambi-
ent + diffuse shading model, lighting, and surface normal in
the mesh. While effective, their method requires several op-
timization steps for each vertex because of various unknown
parameters. Our method can be viewed as a simpler form of
their problem, where we are interested in assigning colors
(albedo), resulting in an efficient closed form solution once
a sparse graph is defined on the entire point cloud.

3. Proposed Method

We first introduce the notations that are used in the rest
of paper. Let us assume that multiple colors for each point
are obtained from its corresponding image pixel colors of
calibrated multi-view images. Let P = {p} denote a set
of point indices of the 3D point cloud, where p is the point
index, and let V = {v;}} denote the observed color vector
of the corresponding image pixel in the ¢-th view image and
C' = {c,} be the color vector that is going to be assigned to
the point p.

The proposed method begins with creation of a sparse
graph, i.e., construct a sparse graph G = {P, E'} with the
given point cloud P, where a node corresponds to a 3D
point p, and an edge e = (p,q) € E represents the con-
nection between nodes corresponding to 3D points p and g.
Our goal is to optimize {c,} based on G = {P, E} and V.

3.1. Graph construction

Unlike image pixels on a regular grid, our 3D point
cloud has an unstructured distribution. Therefore, it is not
straightforward to define edges among nodes (or points).
One may define a fully or densely connected graph by s-
panning many edges. However, given a large-scale point
cloud, the graph needs to be sparse, containing as smal-
I number of edges as possible, in order to make the problem
computationally tractable. One of the most straightforward
approaches to defining a sparse graph to the 3D point cloud
may be to compute k-nearest neighbors (k-NN) for each n-
ode and link them together. However, such an approach may
yield isolated subgraphs, which prohibits the global opti-
mization, unless a sufficiently large & is used, which in turn
introduces computational difficulty.

There are various methods to obtain a connected graph
with geometric approximations, and they can be categorized

into two types of approaches; geometry-based and graph-
based approaches. In geometry-based approaches, the con-
nection between points is determined by geometric order-
ing of points, whereas graph-based approaches use sub-
graph search algorithms based on the graph topology. The
geometry-based approaches, such as traversal of spatial in-
dexing trees [14, 15] or space filling curves [16, 20], can be
immediately applied to point data, while graph-based ap-
proaches, such as spanning tree [|3] or graph traversal [11],
require conversion of the original point data into a graph
representation, whose construction process generally takes
O (nlogn) as a pre-processing [4]. For our problem deal-
ing with massive data, a geometry-based approach is more
suitable because of its computational efficiency.

To achieve this goal, we employ a Z-order curve method
proposed by [20, 10], which connects the all points in the
order of points’ Z-value calculated by interleaving the bi-
nary representation of its coordinate values. Supl}ose, for
example, there are three 3D points, x,, = (2,3,1)", x,, =
(1,4,5)", and Xps = (1,2, 7)" with the integer coordinates
0 <z, y, z < 7. Their Z-values become 000110011,
011000101, and 001011101, respectively. Finally, the
points are connected with the order of p; — p3s — po. The
method produces the recursively Z-shaped curve that multi-
dimensional data is mapped to one-dimensional data while
the locality of the points is preserved.

The Z-ordering method is one of the space filling curves
and has the time complexity of O (nlogn) without pre-
processing; thus, it has an advantage in its efficiency. Fig-
ure 2 shows the conceptual illustration of the Z-order curve
as compared to other graph generation methods such as k-
NN graph and graph of Delaunay triangulation. We can see
in this particular example that k-NN graphs with £ = 1 and
2 produce isolated subgraphs. Although k-NN graph with
k = 3 yields a connected graph, k£ may need to be a large
value to guarantee a connected graph due to a large amount
of points in more realistic settings. The Delaunay triangu-
lation is a conventional method for generating a graph from
point data. The graph obtained from Delaunay triangula-
tion is connected and closes to a complete graph from the
large number of edges, while the Z-ordering curve produces
a connected graph with a much smaller number of edges.

3.2. Point color optimization

Once a sparse connected graph G is obtained by the
method described in the previous section, we take an op-
timization approach for assigning a color vector to each n-
ode. Namely, we minimize the following energy function
that consists of data and smoothness terms :

E(C)=) Dy(C)+X > Sq(C), (O

peEP (p,a)EN

gl
— I

(a) NN graph (k=1) | (b) &-NN graph (k=2) | (c) k-NN graph (k=3)

7/

(d) Delaunay triangulation | (e) Z-ordering curve

Figure 2: Conceptual illustration of various graphs. (a), (b)
and (c) indicate k-NN graphs with k£ = 1, 2, and 3, respec-
tively. (d) Delaunay triangulation, (e) Z-ordering curve.

where C'is the set of color vectors to be assigned to the point
cloud P. The first term D, is a data term for the point p,
Sp,q 1s a smoothness term of the points p and ¢, [V is the set
of node pairs linked in GG, and \ is a weighting factor for the
smoothness term. In our implementation, we consistently
set A = 1.0. We now explain the definitions of the data and
smoothness terms.

Data term. The data term encourages the color vector ¢, to
become similar to the mean color of all the point p’s corre-
sponding pixel colors in multi-view images. The data term
for point p is defined as

D, (C) = alle, — ¥4 l5,)

where c,, is the color vector to be assigned to the point p,
and v, is the mean color of the point p in all the visible im-
ages. ay, is a binary mask that indicates whether the point p
has a valid data term (a,, = 1) or not (a,, = 0), and is used
for activating good data terms. This is to avoid the blur-
ry result depicted in Fig. 1(d) that is obtained by activating
terms of all points. We choose to use the mean color v,
instead of a single color sampled from one view in order to
avoid the view-dependent appearances shown in Fig. 1(c).
The validity a,, can be activated randomly, or by choosing
points p where multi-view colors are consistent. In our ex-
periment, we randomly select 10% of points from the point
cloud P and set their a, = 1.

Smoothness term. Our smoothness term S enforces the
smooth color transition between connected nodes p and ¢
with avoiding over-smoothing. Itis defined as the difference
of color gradients as

Sp.q (C) = [|(cp — cq) — &(p, Q)Hg) (3)

where g(p, ¢) is the color difference between points p and
g. Among multiple colors at a scene point observed from

different views, we choose the set of views within a cer-
tain distance to avoid errors caused by large mis-alignment.
Therefore, the color difference g(p, ¢) is designed as

gpg)= Y,

ie(U(p)NU(q))

(Vi —vi)/|(Up) N U@)], @

where U (p) is the set of views within the threshold distance
for point p. In this manner, we choose the view indices ¢
that are close to both p and q.

Optimization. The energy function of Eq. (1) is a typi-
cal optimization problem that can be represented as a linear
system Ax = b. By setting the first-order derivative of
of Eq. (1) to be zero, we obtain

ap(cp = Vp) + A Z (cp —cg—g(p,q)) =0. (5
(p.a)eN

We optimize all the colors C at once. By re-arranging c,
across all the point p in a vector x, Eq. (5) can be written in
a matrix form Ax = b, where A is a m |P| x m | P| matrix
for data with m color channels, and b is a vector that in-
cludes the color differences between neighboring nodes and
mean colors V,, for the nodes where a,, = 1. The p-th diago-

nal element of the matrix A has the valueof > 1+ ap,
(P EN
and its horizontal neighbors have the values of —1. There-

fore, the matrix A has a sparse structure and can be effi-
ciently solved even though the dimensions of the matrix A
is large. We use a SuiteSparse QR solver [12] for solving
the large sparse linear system.

3.3. Multi-pass Z-ordering

In the connected graph obtained by Z-ordering, each n-
ode has two neighboring nodes except for the first and last
nodes. For the purpose of point colorization, it typically
requires more supports from neighboring nodes in order to
ensure the visual smoothness, otherwise it produces visible
artifacts as shown in Fig. 3(b). To avoid this problem, we
propose to perform multi-pass Z-ordering, i.e., Z-ordering
is applied multiple times by altering coordinate systems. S-
ince our problem is based on 3D coordinates, there are four
possible passes (1 : (z,y,2), 2 : (—x,y,2), 3 : (x,—y, 2),
and 4 : (z,y,—z)) obtained by reflecting each coordinate.
For the n-dimensional space, there are 2"~ ! different pos-
sible passes for Z-ordering, which are the combinations of
positive and negative directions for each dimension. We
observed that using the full set of passes produces the best
result compared with the result with its subset. For the case
of using all passes, each node has 4.49 neighboring nodes
on average. Figure 3 shows the comparison between single
and multi-pass Z-ordering results.

(a) Two-pass
Z-ordering curve

(b) Colorization result
of one-pass Z-ordering

(c) Colorization result

of two-pass Z-ordering
Figure 3: Comparison between Z-ordering and multi-pass
Z-ordering results. (a) shows the illustration of our con-
nected graph. In (a), black points are nodes. The dark lines
show the one-pass of the Z-ordering curve and red lines are
another pass of the Z-ordering curve using the different co-
ordinates. (b) and (c) are the results of single and two-pass
Z-orderings.

3.4. Massive-scale 3D point cloud colorization

While the solution method described in Sec 3.2 can han-
dle a large-scale point cloud by exploiting the sparse graph
structure, the size of the graph is practically limited by the
PC’s memory size. To handle a massive amount of obser-
vations that cannot be accommodated on PC’s memory, we
solve the problem by splitting the entire 3D point cloud into
several chunks.

This problem is equivalent to partitioning a graph into
several subgraphs. When generating subgraphs, it is impor-
tant to minimize the number of edges spanning across sep-
arated subgraphs. This type of problems has already been
studied as a graph partitioning problem [&]. If there are no
edges among subgraphs, the matrix A becomes a block di-
agonal matrix. If A is a block diagonal matrix with ¢ sub-
matrices on the diagonal, then A is invertible if and only if
A, is invertible for 1 < a < ¢. In this case A~ is also
a block diagonal matrix, identically partitioned to A, with
(A’l)a = (A,)"". It means that results of global and lo-
cal methods are same if we can split a graph without hav-
ing edges spanning across subgraphs. However, this graph
partition problem is unfortunately an NP-complete prob-
lem [3]. In addition, when the original graph is too large
to store in the memory, we cannot directly apply a graph
partitioning method.

We, therefore, take a strategy of first splitting the en-
tire point cloud into several chunks with a constant size,
i.e., segmenting the original data using a cubic grid, and
performing colorization by constructing a graph for each
chunk. Because of the fact that our graph is extreme-
ly sparse, i.e., each node only has 2 ~ 4 connected n-
odes among several hundred million nodes, we have ob-
served that this local method does not suffer much from
the simple partitioning as long as the size of sub-matrix
is sufficiently large. To further reduce the potential col-
or discrepancy across neighboring chunks, we split the en-
tire point cloud by allowing some overlaps among neigh-

boring chunks. These overlaps enable to include the same
points within boundary regions across neighboring chunks
for colorization and consequently produce consistent colors
among neighboring chunks. In our implementation the ratio
of overlap is set to w = 0.1(= 10%).

4. Results

We first qualitatively and quantitatively evaluate our
method using three synthetic datasets and compare our
method with other graph generation methods. Next, we
apply our large-scale colorization method on large-scale
datasets that are taken from the real-world.

4.1. Experiments on Synthetic Data

Using the Bunny, Dragon, and Armadillo models [1], we
render multi-view images in 1280 x 960 resolution from
48 different viewpoints using the Lambertian shading mod-
el. For each model, we generate observation datasets by
adding noise to (1) camera extrinsic parameters, (2) pixel
intensities, and (3) both camera extrinsics and intensities.
The input point cloud is generated by uniformly sampling
the original mesh model.

We compare our method with other graph generation
methods: k-NN with £ = 5 and 20, and Delaunay trian-
gulation (DT). We consider two variants of our approach;
single-pass (1p) and 4-pass Z-ordering (4p Z-order).

To assess the colorization quality, we use the average in-
tensity error per point (AEP), and ratio of the number of
erroneous points whose error is greater than an intensity
threshold ¢(= 20) (REP). We also compare the computa-
tion time measured on a system equipped with an Intel(R)
Xeon(R) 16 cores 2.90 GHz CPU and 256 GB memory.

Table 1 shows the quantitative evaluation for synthetic
datasets under various types of noise and graph generation
methods. Our method outperforms the other graph genera-
tion methods in terms of error and computation time. For
the k-NN graph, a small k produces significant artifacts due
to isolated subgraphs. Although k-NN graph with & = 20
produces a similar result to our method, the computation
time becomes much longer than our method. We also use
DT to generate the graph from point data. While DT does
not guarantee to produce a connected graph in the 3D s-
pace, in these examples, it consistently produces plausible
result. However, due to the density of the graph, it requires
significantly longer computation times.

Figure 4 shows the colorization result of the synthet-
ic scenes. The closest-view method, where a color is as-
signed directly from the point’s closest view, produces er-
roneous results containing visible color inconsistency due
to the noise in camera extrinsics. The mean color based
method ends up with blurry results due to the same error
factor. On the other hand, our method avoids the color
inconsistencies and produces more vivid result than these

simple techniques. The remaining results are from various
graph generation methods. We can see that k-NN graph
with k£ = 5 produces many artifacts for all models due to a
large number of isolated subgraphs where data terms are not
properly defined, and £ = 20 removes color inconsisten-
cy with reduced blurriness. DT produces quite good result
close to our method (1p Z-order and 4p Z-order) because it
produces many edges in the graph, although the computa-
tional cost is expensive. The 1p Z-order results often con-
tain a small color inconsistency, but 4p Z-order deals well
with these color inconsistency. As the result indicates, our
method consistently produces visually plausible result with
significantly lower computational cost in comparison with
k-NN graph with £ = 20 and DT methods.

4.2. Experiments on Large-scale Data

Our large-scale test dataset is a dense 3D point cloud of
an urban scene. It is re-sampled from original 3D points
generated from a LiDAR sensor mounted on a vehicle driv-
ing in the city. Our dataset contains 215, 920, 001 3D points
and 120 of 6M -pixel images. To remove the erroneous Li-
DAR firings, e.g., reflections on glasses and no laser return,
we applied noise filtering as a pre-processing.

Table 2 shows the comparison of the computation times
for various graph construction methods on several chunk
sizes. We first compare the computation time of Z-ordering
with varying numbers of passes (1 — 4). For each multi-
pass Z-ordering, we use an average computation time of al-
1 possible passes, e.g., all pairs of (—z,y, 2), (x,—y, 2),
and (z,y, —z) for 2-pass Z-ordering. We also evaluate the
computation times of two graph construction methods, k-
NN and DT. For the multi-pass Z-ordering, the computation
time increases as the number of passes goes up because of
the increasing number of edges. In the £-NN graph, we use
20 as k, which produces a similar quality result with our
method. The result is consistent with the evaluation using
the synthetic dataset; for all chunks, our method produces
qualitatively similar result with k-NN with £ = 20 and DT
but with much lower computation time.

To process the whole dataset, we split the original data
into 151 chunks. The total computation time is 2.92 hours
for colorizing the 215 million points. Figure 5 shows the
colorization result of the entire dataset. The result is visu-
ally pleasing without blurry boundaries or color inconsis-
tencies. Especially, since our method uses the graph par-
titioning scheme with overlap for the large-scale data, we
can observe that the colorization result does not contain any
boundary artifacts between chunks. To show the details
of the result, we show close-up views from different view
points in the figure.

Table 1: Quantitative evaluation for synthetic datasets. Each element in the center columns consists of AEP and REP, which

indicate the colorization error. The last column shows the average computation times.

Error for noise type ‘
3D model ‘ Method ‘ Camera + Intensity ‘ Camera ‘ Intensity ‘ Avg time (sec)

5-NN 127.02 /7 0.66 125.59/0.66 | 126.11/0.67 71.72

20-NN 9.71/0.15 8.77/0.13 4.2470.02 822.77

Bunny DT 9.47/70.14 8.53/0.12 4.2170.02 2196.51
1p Z-order 7.45/0.09 6.81/0.09 4.3270.02 28.45

4p Z-order 8.59/0.12 7.7370.10 4.19/0.02 219.81
5-NN 124.72 7 0.99 123.02/0.99 | 126.87/0.99 57.09

20-NN 6.17/0.06 7.10/0.07 2.79 /1 0.02 496.28

Dragon DT 5.9570.06 6.8870.07 32.13/0.49 2061.80
1p Z-order 6.33/0.06 7.20/0.08 3.31/0.02 20.80

4p Z-order 5.90/0.06 6.81/0.07 2.71/0.02 200.28
5-NN 124.24 7 0.94 133.39/0.95 | 126.51/0.94 45.06

20-NN 11.46/0.17 12.30/0.18 5.18/0.04 354.29

Armadillo DT 10.99/0.15 11.88/0.17 4.92/70.04 834.25
1p Z-order 10.26 / 0.14 11.29/0.16 5.25/0.04 18.73

4p Z-order 10.43/70.14 11.497/0.16 4.89/0.03 109.10

Table 2: Comparison of the computation times [second] for various graph construction methods on varying size of data.

‘ ID ‘ # of points ‘ 1-p zorder ‘ 2-p zorder ‘ 3-p zorder ‘ 4-p zorder ‘ 5-NN ‘ 20-NN ‘ DT ‘
1 64993 5.55 5.86 7.61 9.72 | 5.39 16.55 37.53
2 885888 31.33 41.49 60.24 116.85 | 13.16 | 437.59 1158.10
3 976314 32.67 45.83 62.26 123.05 | 14.14 | 482.38 1288.08
4 1138103 38.03 53.54 74.09 162.46 | 14.96 | 508.84 | 1180.50
5 1672754 54.01 76.53 122.08 236.36 | 18.84 | 627.54 | 2060.49
6 5980147 222.79 286.62 324.78 922.66 | 63.48 | 3019.42 | 29014.66
5. Conclusions Acknowledgements

We have presented an efficient method for colorizing a
large-scale 3D point cloud in presence of noisy camera pa-
rameters and color inconsistencies across multi-view im-
ages. The proposed multi-pass Z-ordering method is shown
effective in terms of its computational cost and quality of
the colorization. In comparison to the conventional tech-
niques, such as k-NN and DT, it is advantageous particu-
larly in its computational efficiency. We believe that the
presented method will be useful for various tasks where we
wish to assign vectored values, not necessarily limited to
color values but also be other quantities, such as model pa-
rameters of a certain reflectance model. Our current method
has a limitation in that it produces blurry result for models
having a fine and uneven geometric structure and/or high-
frequency texture within a small region. In the future, we
would like to resolve the blurriness problem for such com-
plex surfaces by simultaneously looking into geometry and
appearance cues. We also wish to explore the possibility
of extending the method for explicitly accounting for view-
dependent appearances.

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government(MEST) (No. NRF-2013R1A2A1A01015870).

References

[1] The Stanford 3D Scanning Repository. https://
graphics.stanford.edu/data/3Dscanrep/. 5
A. K. Aijazi, P. Checchin, and L. Trassoudaine. Segmenta-
tion based classification of 3d urban point clouds: a super-
voxel based approach with evaluation, 2013. Remote Sens-
ing. 2

K. Andreev and H. Ricke. Balanced graph partitioning,
2004. ACM symposium on Parallelism in algorithms and
architectures. 4

F. Aurenhammer. Voronoi diagrams - a survey of a funda-
mental geometric data structure, 1991. ACM Computing
Surveys. 3

N. Bannai, R. B. Fisher, and A. Agathos. Multiple clor tex-
ture map fusion for 3d models, 2007. 2

J. T. Barron and J. Malik. Shape, albedo, and illumination
from a single image of an unknown object, 2012. CVPR. 2

(2]

(3]

[4]

(5]
(6]

Bunny Dragon Armadillo

(a) Three synthetic datasets for quantitative evaluation

Ground-truth Closest-view Mean color 5-NN 20-NN DT Ip Z-order 4p Z-order

(b) Colorization results for Bunny model under various types of graph generation methods

(d) Colorization results for Armadillo model under various types of graph generation methods

Figure 4: Colorization results of synthetic datasets. (a) Bunny, Dragon, Armadillo models. For each model, we magnify parts
of colorization result. (b), (c) and (d) are magnified results for Bunny, Dragon, and Armadillo, respectively.

Figure 5: Colorization result of large-scale dataset. We magnify three regions depicted as blue-colored box, and each apex in
the polyhedron indicates the view point.

(7]
(8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

J. T. Barron and J. Malik. Intrinsic scene properties from a
single rgb-d image, 2013. CVPR. 2

C. E. Bichot and P. Siarry. Graph partitioning: optimisation
and applications, 2011. ISTE-Wiley. 4

M. Chuang, L. Luo, B. J. Brown, S. Rusinkiewicz, and
M. Kazhdan. Estimating the laplace-beltrami operator by
restricting 3d functions, 2009. Eurographics Symposium on
Geometry Processing. 2

M. Connor and P. Kumar. Fast construction of k-nearest
neighbor graphs for point clouds, 2009. 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms, 2001. MIT Press and McGraw-
Hill. 3

T. A. Davis. Algorithm 915, suitesparseqr: Multifrontal mul-
tithreaded rank-revealing sparse qr factorization, 2011. 4

J. Eisner. State-of-the-art algorithms for minimum spanning
trees: a tutorial discussion, 1997. Manuscript. University of
Pennsylvania. 3

R. Finkel and J. L. Bentley. Quad trees: A data structure for
retrieval on composite keys, 1974. 3

A. Guttman. R-trees: A dynamic index structure for spatial
searching, 1984. SIGMOD. 3

D. Hilbert. Uber die stetige abbildung einer linie auf ein
flichenstiick, 1891. Mathematische Annalen. 3

J. Jia and C. K. Tang. Tensor voting for image correction by
global and local intensity alignment, 2005. 2

S. J. Kim and M. Pollefeys. Robust radiometric calibration
and vignetting correction, 2008. 2

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

H. Li, E. Vouga, A. Gudym, L. Luo, J. T. Barron, and G. Gu-
sev. 3d self-portraits, 2013. SIGGRAPH Asia. 2

G. M. Morton. A computer oriented geodetic data base: and
a new technique in file sequencing, 1966. Technical Report,
Ottawa, Canada: IBM Ltd. 3

F. Pitit, A. C. Kokaram, and R. Dahyot. N-dimensional prob-
ability density function transfer and its application to color
transfer, 2005. ICCV. 2

S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution
point rendering system for large meshes, 2000. SIGGRAPH.
2

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. M.
Seitz. The visual turing test for scene reconstruction, 2013.
3DV (International Conference on 3D Vision). 2

M. Stamminger and G. Drettakis. Interactive sampling and
rendering for complex and procedural geometry, 2001. Eu-
rographics Workshop on Rendering Techniques. 2

J. Strom, A. Richardson, and E. Olson. Graph-based seg-
mentation for colored 3d laser point clouds, 2010. IROS.
2

Y. W. Tai, J. Jia, and C. K. Tang. Local color transfer vi-
a probabilistic segmentation by expectation-maximization,
2005. CVPR. 2

K. Yamamoto and R. Oi. Color correction for multi-view
video using energy minimization of view networks, 2008. 2
M. Zwicker, H. Pfister, J. Baar, and M. Gross. Surface splat-
ting, 2001. SIGGRAPH. 2

